AD-A241 322 o @

TR
NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS - B

E DESIGN AND IMPLEMENTATION OF AN INTELLIGENT

COST ESTIMATION MODEL FOR DECISION
SUPPORT SYSTEM SOFTWARE

by
William E. Blazer

September 1990

lThesis Advisor: Tung X. Bui
—
Approved for public release; distribution is unlimited

91-12679 015
MR TR gt 10 7

UNCLASSIFIED
SECURITY CLASSIFICATION TF im'S FALE

REPORT DOCUMENTATION PAGE

Ta. REPORT SECURITY CLASSIFICA TiOf, b KESTRICTIVE MARKINGS
UNCLASSIFIFED
Za. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION
(If applicable)
Naval Postgraduate School Code 37 Naval Postgraduate School
6c. ADDRESS (City, State, and ZiP Code) 7b ADORESS (City, State, and 2P Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
8a. NAME OF FUNDING /SPONSORING 80 OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
8c. ADDRESS (City, State and ZiP Coge) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO NO ACCESSION NO.
11 TITLE (include Security Classification) T
DESIGN AND IMPLEMENTATION OF AN INTELLIGENT COST ESTIMATION MODEL FOR DECISION
SUPPORT SYSTEM SOFTWARE .

12. PERSONAL AUTHOR(S)
Blazer, William E.

13a. TYPE OF REPORT 135 TIME COVERED 14. DATE CF REPORT (Year, Month, Day) |15 PAGE COUNT
Master's Thesis FRC* 0 1990, Septerer 126

16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not rellect the official

nolicy or position of the Department of Defense or the U.S. Govermment.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIiELD GROUP SUB-GROLP Software Cost Estimation Model; COCOMO;

Function Point

19 ABSTRALT (Continue on reverse if necessary and identify by block number)

Recently, Decision Support Systems (LCSS) have increased in importance and
uscge. However, these increases have not carried over into developing better
models to estimate the real cost of developing the DSS. This thesis explores
jarious estimation methods that seem pertinent to DSS. It advocates the use of
b combination of modeling tools particularly tailored to the users' environment.
hn Intelligent Cost Estimation Model (ICEM) for Decision Support System softwars
is proposed. To promote user-friendliness, ICEM uscs a rule-based front-end
interface coupled to a spreadsheet program. For comparison purposes the current
yersion of ICEM includes the Intermediate COCOMO model, the Intermediate COCOMO
model particularly calibrated for the in-house DSS development environment, and
h parametric model which incorporates the function point size metric.

20 DISTRIBUTION/ AVAILABAITY OF ABSTRALT 21. ABSTRACT SECURITY CLASSIFICATION

FO UNCLASSIFIEDAUNLIMITED [SAME a$ o7 [otic users | Unclassified
222 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code)]‘zc OFFICE SYMBOL
Prof. Tung X. Bui (408} CAE-26 =0 | Code AS/Bd
PN ECPM 1473, 64 MaR 83 APR edition may be used until exhaustec

SECURITY CLASSIFICATION OF THIS PAGE
2 U.S. Gevernment Printing Offiss: 1900—608.24,

i UNCLASSIFIED

Ai' other editiors are obso'ete

Approved for public release; distribution is unlimited

Design and Implementation of an Intelligent Cost Estimation
Model for Decision Support System Software

by

William E. Blazer
Lieutenant, United States Navy
B.S., Virginia Military Institute, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
Septemker 1990

. /
Author: é.’n ’/CZ" [ed 3 / “p

William’E. Blazer

Approved by: / OJ\JZ;X 51/11/’

Tung X. Bui, Thesis Advisor

cz:f;:%{‘fikuh~;/

Tarek Abdel-Hamid, Second Reader

AL Mibsy ATes, Pl

David R. Whipple, Chairhan,
Department of Administrative Sciences

ii

ABSTRACT

Recently, Decision Support Systems (DSS) have increased in
importance and usage. However, these increases have not
carried over into developing better models to estimate the
real cost of developing the DSS. This thesis explores various
estimation methods that seem pertinent to DSS. It advocates
the use of a combination of modeling tools particularly
tailored to the users' ervironment. An Intelligent Cost
Estimation Model (ICEM) for Decision Support System software
is proposed. To promote user-friendliness, ICEM uses a rule-
based front-end interface coupled to a spreadsheet progran.
For comparison purposes the current version of ICEM includes
the Intermediate COCOMO model, the Intermediate COCOMO model
particularly calibrated for the in-house DSS development
environment, and a parametric model which incorporates the

function peint size metric.

Accession For P
NTIS ORA&L =
DTIC T4B O
. Unannounced O
{//——T_.\ Justification |
‘P&%A. '; —_—
eQ%: ! By__.
— | Distribution/

A s1inabilivy Loden
Avall and/cr
Special

M

. Diat
111

THESIS DISCLAIMER

The reader 1is cautioned that computer programs developed
in this research may not have been exercised for all cases of
interest. While every effort has been made, within the time
available, to ensure that the programs are free of computa-
tional and logic errors, they cannot be considered validated.
Any application of these programs without additional verifica-
tion is at the risk of the user. Additionally, the ICEM
program is available from the thesis advisor, however, since
VP~Expert and VP-Planner Plus are a copyright of Paperback
Software International, they <can not be included for

distribution.

iv

II.

III.

Iv.

TABLE OF CONTENTS

INTRODUCTION === === e oo e e e e e e
A. BACKGROUND ==—==m = o oo e
B. SCOPE ====—=m e oo e
C. METHODOLOGY ======—m === o e e e
D. ORGANIZATION =—===—m = mmmm oo

A FRAMEWORK TO CLASSIFY COST ESTIMATION
MODELS === === = — = e e e e e

A. BASTILI'S CLASSIFICATION SCHEME -----—---==---
B. THIBODEAU'S CLASSIFICATION SCHEME --—-=-—=--
C. SUMMARY === === o oo e e
SIZE METRICS ——===—=m o m o m mm meeo
A. SOURCE LINES OF CODE =====——-=——m——— oo
B. FUNCTION COUNTS —========—m———mmem e
C. HALSTEAD'S SOFTWARE SCIENCE —---—-—==--—wu—--
D. FUNCTION POINTS ========——=————mmm e
E. OTHER PRODUCT ATTRIBUTES ==--=-—===-—===c-—ec--
EXISTING COST ESTIMATION MODELS -==-=-=--=—-==-—--
A. BACKGROUND ====m = e e
B. COST ESTIMATION MODELS —--=-—-========—=—-—=—-
C. SUMMARY === == m oo e e e e e
COCOMO MODEL ======mm === e mm oo o e e
A. OVERVIEW ==—=m=mmmm oo oo e
B. BASIC MODEL ======—=mm—m oo oo

11

11

12

13

15

17

19

19

20

27

29

29

29

C. INTERMEDIATE COCOMO —====-==——c—c—ce——cc—co-- 33
D. CALIBRATING THE COCOMO MODEL -==-=cec-c—aec—-- 36
VI. FUNCTION POINT ANALYSIS MODEL -=--———---c——c——e——-— 39
A. BACKGROUND ~===~—ecsmce e nc e n e e 39
B. CALCULATING FUNCTION POINTS ---—-==-—---—-—-——-—-— 40
C. STEPS (1 & 2) COUNT AND CLASSIFY FUNCTION
TYPES == == m— o m oo oo oo o 40
D. (STEP 3) ADJUST FOR PROCESSING COMPLEXITY =-- 48
E. (STEP 4) MAKE THE FUNCTION POINTS
CALCULATION =—====——=-m oo e oo oo o 49
F. SUMMARY =====———mmm oo oo 51
VII. INTELLIGENT COST ESTIMATION MODEL (ICEM) —----=-- 52
A. INTRODUCTION ===mmmmmm oo 52
B. OVERALL ARCHITECTURE OF ICEM ----~=---———--- 54
VIII. USING ICEM FOR EFFORT ESTIMATION OF DSS
SOFTWARE === === — e oo e e e e 59
A. INTRODUCTION =——===———e oo 59
B. THE DSS DATABASE =——=—=--=-—=c-——ommmemme o 59
C. CALIBRATING THE COCOMO MODEL FOR DSS =-—=~==-- 63
D. DISCUSSIONS ====m————=—mm e oo em oo 65
IX. CONCLUSIONS AND RECOMMENDATIONS —=-===—=—-ce———- 67
A. CONCLUSIONS ====—=-m=mmemmmom oo 67
B. RECOMMENDATIONS FOR FURTHER RESEARCH ------- 68
APPENDIX A: SAMPLE SESSION =—====—-——=—-ocmmmommmm o 69
APPENDIX B: SOURCE CODE ====—-==--——m—cmomo oo 80
LIST OF REFERENCES =======m=m-mmm oo oo 115
INITIAL DISTRIBUTION LIST -—-—====—-—=———————————ae—— 119
vi

I. INTRODUCTION

A. BACKGROUND

Recently, Decision Support Systems (DSS) have increased in
importance and usage. Likewise, there has been an increase in
literature regarding the design and development of DSS
software. Unfortunately, these increases have not carried
over into developing better models to estimate the real cost
of developing the DSS. Current literature argques that a DSS
should be developed quickly and inexpensively; however, user
requirements in terms of interface and modeling capabilities
often significantly increase development cost [Ref. 1].

As the cost of software projects has soared over the past
decade there have been several attempts to develop cost
estimation models that would allow a manager to accurately
predict the development cost of software projects. Some of
these models are addressed in Chapter 1IV. With cost and
demand for new software at an all-time high and increasing
backlogs of undeveloped software projects, the development of
better cost estimation models is more important today than it

ever has been.

B. SCOPE
The purpose of this thesis is to explore the possibility

of ccnbining the advantages of parametric and heuristic

modeling to better estimate the development cost of DSS
software.

The main thrust of this study will be in the design and
implementation of an Intelligent Cost Estimation Model (ICEM)
that would allow a DSS builder to predict and refine
development cost. Due to the considerable difficulty of DSS
software estimation, this work will focus on small scale DSS
applications developed by small programming groups whose
development tools consist of high level programming languages.
Furthermore, it will concentrate on developing a calibrated
model for the DSS environment based on the COCOMO and function

point concepts.

C. METHODOLOGY

When estimating the cost of software development the
quality of the estimation depends upon the precision of the
software specification. By their nature, Decision Support
Systems deal with ill-defined problems. This, in turn, makes
it difficult tc accurately estimate the cost of developing the
DSS. Two research methodologies can be applied in developing
cost estimation models. These include the parametric and
heuristic approaches. This research attempts to combine these
two approaches to gain some insights on the DSS cost behavior.
An integrated design approach will be used to implement the
model. It will consist of a rule-based expert system which is

coupled to a spreadsheet model. The expert system is used to

gather heuristic information for cost estimation, while the
spreadsheet provides the framework for the parametric model

which performs statistical calculations.

D. ORGANIZATION

This thesis is broken down into nine chapters with two
appendices. After the introduction in Chapter I, the thesis
begins in Chapter II by first looking at the framework in
which cost estimation models are classified. The issue of
size metrics and how they effect the development of cost
estimation models are addressed in Chapter III. Different
methods used in measuring software size are also addressed in
this chapter along with the advantages and disadvantages of
each metric. Chapter IV presents an overall review of several
cost estimaticn models currently available. The COCOMO and
Function Point models are studied in greater detail in
Chapters V and VI respectively. The ICEM model is presented
in Chapter VII. Chapter VIII provides an empirical analysis
of the ICEM model based on collected data. Due to the
inaccurate nature of some required information, calibration
was performed only for the COCOMO model. Chapter IX contains
the conclusion and future recommendations. A sample session
with the ICEM model showing screen formats is provided in
Appendix A. Finally, the source code for the ICEM model is

provided in Appendix B.

iI. A FRAMEWORK TO CLASSIFY COST ESTIMATION MODELS

There have been many models developed to estimate the cost
of software development. Most of these models are empirical
models that use information gathered from previous projects to
make future predictions of current projects such as time,
effort, and cost requirements. They derive basic equations
from past projects using statistical tools such as linear
regression. Models tyrically utilize one or 4 combination of
five major parameters for estimation: productivity, schedule,
cost, quality, and size. The most common parameter used for
estimation is size (see Chapter III).

Models have been classified under many different formats.
Many models are defined as being either micro or wacro models.
A micro model derives effort estimations from small pieces of
information which have been scaled upwards (bottom-up
approach). The total effort is derived from the sum of all of
the smal:er effort estimates. On the other hard, a macro
model 1is based upon a view of the big picture (top-down
approach). Effort is estimated for the entire product
development and then proportioned between the separate

development activities.

A. BASILI'S CLASSIFICATION SCHEME

One of the disadvantages in using the micro/macro scheme
for classifying models is that it is very limited in scope; it
only separates models into two large groups. A more detailed
scheme was developed by Victor Basili, who distinguished
models according to the type of formula thev used to calculate
total effort [Ref. 2]. He defined models as being single-
variable if only one basic variable wes used as a predictor of
effort and multi-variable if several were used. He further
defined models as being either static single-variable, static
multivariable, or dynamic multivariable.

1. Static Single-variable Model

In a static single-variable model, a unique variable
such as SLOC (Source Lines of Code) is utilized in the derived
equations to make predictions about other variabkles such as
cost or time. The basic effort equation of this model takes

on the following form:

Effort = a*Size®

where a and b are estimated constants derived through linear
regression of a historical database. The Walston-Felix and
the basic COCOMO cost estimation models are examples of
single-variable models. A description of all cost estimation

models referred to in this chapter may be found in Chapter IV

with the exception of the COCOMO and Function Point models
which are described in Chapters V and VI respectively.

2. Static Multivariable Models

Cost estimating models, as defined by Basili, may also
be categorized as static multivariable. A model is considered
multivariable if it is based on several parameters and static
if a single effort value is calculated by the model formula.
The static multivariable models use the additional parameters
to make adjustments to the original estimation. These
adjustments are most often based on historical data. This
model 1s further subcategorized as being either an adjusted
baseline model, an adjusted table~driven model, or a multi-
parameter equation model.

a. Adjusted Baseline Model

The adjusted baseline model uses a single-variable
baseline equation which is adjusted in some way by a set of
other variables. The Intermediate COCOMO model fits this
category as its baseline effort estimate relies only upon
project size and it applies a set of adjustment multipliers to
its effort equation.

b. Adjusted Table-Driven Model

The adjusted table-driven model uses a baseline
estimate adjusted by a set of variables whose relationships
are defined in tables built from historical data. An example
of this is the Wolverton model. This model contains a basic

algorithm which involves categorizing the software routines.

c. Multi-parameter Model
In the multi-parameter model, a base formula is
used which contains several variables. The GRC model contains
several multiparameter equations containing more than one
variable.
3. Dynamic Multivariable Model

The final category defined by Basili is the dynamic
multivariable model. Unlike the static model, the dynamic
model does not have a single basic variable. Rather, it
contains a set of inter-dependent variables which respond to
changes over a period of time, such as staffing levels. The
Putnam model is a dynamic multivariable model that assumes a
specific distribution of effort over the life of a software
development project.

Figure 2.1 shows the model categories and their

relationships as described by Basili.

B. THIBODEAU'S CLASSIFICATION SCHEME

Another categorization scheme for cost estimation models
was developed by Robert Thibodeau. Thibodeau grouped models
into three separate categories based on the method the model
uses in making estimations. These include: regression,
heauristic, and phenomenological. ([Ref. 4]

1. Regression Model

In the regression model, parameters are developed for

a single cost estimation equation by using linear regression

Static\ Dynamic
Single Multivariable
Variable / N
N
yd N
Adjusted Adjusted
Baseline Table Driven

Figure 2.1 Model Relationships
[Ref. 3:p. 32]

on available data. This model is specific to the environment
in which it is developed. Examples of regression models
include the Doty, COCOMO, and GRC models.

2. Heuristic Model

Unlike the regression model, the heuristic model is
considered to be free from any singular mathematical
formulation. Heuristic models usually combine a number of
different estimating techniques. They provide a flexible
approach which utilizes observations of relations, interpreta-
tions, and a certain amount of subjectivity. They provide an

intuitive development of an estimate which takes advantage of

previous estimates and adjustment factors. Examples of
heuristic models include the Boeing, Price S, and Wclverton
models.

3. Phenomenological Model

The third type of model described by Thibodeau is the
phenomenological model. This category was developed for and
is based on the SLIM model. It is unique in the fact that it
is the only model to use observed basic relationships which
are unrelated to the software development process. These
relationships are more representative of scientific law rather
than adaptive interrelationships which are used in heuristic

models.

C. SUMMARY

From all of the previous category listings it is evident
that there are many methods for classifying cost estimation
models. These methods are often useful when analyzing
different cost estimation models. However, regardless of the
classification of the model, almost all of the cost estimation
models underestimate their values. Additionally, if the model
is not properly calibrated to the user's environment, this
estimation error may be as great as 500 percent or more [Refs.
5-8]. With this in mind, it is the intent of this thesis to
develop an integrated automated model (ICEM) which utilizes
two of the best models currently available. The ICEM model

will combine the benefits of a parametric model (COCOMO) with

the advantages of a heuristic model (Function Point) in order
to provide a better cost estimating tool. By using models
based on different classification schemes, the user will
better be able to validate estimations. Additionally, this
model will provide the user with two alternative methods for
making cost estimations. This allows the user the ability to
select the model most appropriate for the given situation.
Since the ICEM model will be calibrated to the unique
environment of Decision Support Systems, it is only

recommended for this environment.

10

ITTI. SIZE METRICS

Almost all of the cost estimation models currently
available use some form of size measurement or size metric for
making productivity and effort estimates. Likewise, most of
the error in estimating cost of software development is
attributed to error in estimating the size of the program. An
accurate and consistent method for obtaining size measurements
is essential to the success of most cost estimation models.

As DeMarco [Ref. 9:p. 3] states in reference to metrics, "You

can't control what you can't measure."™ This is also true for
estimation, you <can't estimate without ©proper input
measurements.

A. SOURCE LINES OF CODE

One of the most common methods for measuring the size of
a project is by measuring the number of source lines of code
(SLOC) which it contains. It would seem that measuring the
number of lines of code would be an easy and accurate process
for providing a consistent size measurement; however, in order
to do this one must first determine what constitutes a line of
code. This can vary depending on the desired output. For
instance, when trying to determine the functional size of a
program it is generally accepted that only executable

statements are counted as lines of code; therefore, comments,

11

blank lines, and data are not considered. But, if determining
the total amount of effort is the desired result then all
factors should be included in the measurement.

Furthermore, there still remains a problem that the effort
required for writing a line of executable code may be easy or
difficu’t depending on the task. Therefore the size of a
program measured in SLOC does not provide a standard basis for
determining the effort involved. For example, a 100-line
program could take as little as a day to develop or as much as
a week depending on the complexity of the program task.

Another problem with using SLOC measurements 1is that
programs are written in many different languages, such as
Pascal, ADA, Fortran, Cobol, and Assembly 1language. The
amount of code required to perform a task in one language does
not necessarily equate to the number of lines that another
programming language would require to perform the same task.
Additionally, SLOC unfairly penalizes fourth generation
languages for their additional complexity. This point is
demonstrated in the empirical analysis of Chapter VIII. Since
most DSS are developed using fourth generation languages this

is very disadvantageous.

B. FUNCTION COUNTS
In order to overcome the problems associated with SLOC,
there have been many other methods introduced for measuring

program size. Function counts is one such method which

12

concentrates on measuring the amount of functions in a

program. Conte et al. [Ref. 10:p. 43) defined a function:
...as a collection of executable statements that performs a
certain task, together with declarations of the formal
parameters and local variables manipulated by those
statements.

The advantage in using the number of functions as a size
metric is that essentially, the number of functions will
remain the same regardless of the language the program is
written in. Additionally, during early life cycle development
when the code has not yet been developed, it is often easier
to estimate the number of functions that will be required than
to estimate the SLOC. The down side to this method is that
there is considerable overhead and cost in counting the number
of functions. This overhead discourages the definition of a
small function. Theoretically, a function could be as small
as a single statement or as large as an entire procedure
depending on how it 1is defined. This could 1lead to

consistency problems and as programs are separated into larger

functions the benefits of this method are lost.

C. HALSTEAD'S SOFTWARE SCIENCE

As previously discussed, one of the major problems with
SLOC 1is consistency, since some lines of code are more
difficult to code than others. One solution to this problem
is to give more weight to 1lines that are more complex.

Maurice Halstead developed such a scheme in his metric called

13

Software Science [Ref. 11]. Halstead's method |uses
measurements of operators and operands.
Operators are primarily symbols or keywords that specify

an action. They consist of arithmetic symbols (such as +, -,

and /), command names (such as 1IF, IF..THEN..ELSE, or
DO..WHILE), special symbols (such as :=, braces, and
semicolons), and finally grouping functions (such as

BEGIN..END). Since BEGIN..END performs the same function it
is considered one operator. Operands are the symbols used to
represent data. They consist of variables, constants, and
labels.

Software Science uses measurements of operators and
operands to make predictions abocut a program's length, volume,
difficulty, level, and effort required. The length of a
program is calculated as a dimensionless quantity but can be
converted to SLOC by dividing by a constant which is language-
dependent [Ref. 10:p.41]. The volume of a program is also a
size measurement, but it is in terms of the minimum number of
bits required for programming. Volume is dependent upon a
measurement that is referred to as a program's vocabulary.
The basic metrics of Software Science are defined as:

n, = number of distinct operators in a program

n, = number of distinct operands in a program

Z
[

number of occurrences of operators in a program

N, = number of occurrences of operands in a program

14

Estimations are accomplished by using the following

equations:
N = Observed Program Length = N, + N,
ﬁ = Estimated Program Length = n(log,(n;))+ n,(log,(n,))
n = Program Vocabulary =n; + n,
V = Program Volume = N(log,(n))
D = Program Difficulty = (ny/2)/(N;/n;)
L = Program Level = 1/D
E = Effort = V/1

It has not been sufficiently proven that the metrics
proposed by Halstead are actually any better at estimating
size than SLOC and there have been many people who have
questioned its effectiveness [k:fs. 10; 12-15]. 1In view of
this, and with the increased cost and overhead associated with
the Halstead and other metrics, SLOC has continued to be the
dominant size metric. Additional information regarding the
Halstead and many other software metrics and models may be
found in a comprehensive collection of related articles by

Victor Basili [Ref. 16].

D. FUNCTION POINTS

Probably one of the more successful and rapidly growing
methods for measuring size has been Albrecht's Function Point
Analysis method [Refs. 17; 18]. The function point metric was
also developed as an alternative to LOC as the principle

sizing metric. Function Point metrics do not measure LOC,

15

rather, they focus on program functionality. This is not to
be confused with the function count method previously
discussed. Function Point Analysis 1is not simply a
measurement of the number of functions. Rather, it measures
five specific areas which include: inputs, outputs,
interfaces, files and inquiries. A complexity factor is used
to adjust the numeric values of each of the five areas. These
values are then summed to obtain a function point count which
can be used as a dimensionless sizing metric or further
equated to a SLOC measurement.

Most of the cost estimation models that have been
developed are unable to make accurate estimates early in the
development phase of a project. This is because most of the
models rely on SLOC as the primary size metric and estimating
SLOC early in the life cycle is very difficult and highly
inaccurate. Boehm [Ref. 19:p. 311] illustrated the difficulty
cost models have in making accurate estimates early in the
life cycle of a project. This is shown in Figure 3.1.

The method of calculating function points is described in
detail in Chapter VI. One of the advantages of using function
points is that they can be computed early in the development
cycle, essentially after the requirements and functional
specifications are written. Additionally, by concentrating on
program functionality the problems associated with wusing
different languages disappear. However, some researchers also

point out some non-negligible problems associated with this

16

————n

4 \
Classes of people, ﬂd' SOUCEs OT UNCerTAINLY,

. -6ata sourcw to suppont - \>ru\mn-machme intertace soh%r!/

ax - o
Query types, data loads, .~ /
intelligent-terminai tradeoffs, /
response times H
g internai data structure,
/ buffer handiing technigues
- 7 Detailed scheduling atgontams,
/ #rror hangiing
1.5¢ L / Programmer understanding
4 of soecifications
§ 1.25¢ |- ~
.g
e x
2
s 0.8x =
2 0.6Mx L
0.5« +
Product Detaiiec
0 25x Conceot of Requirements desigr design Accepted
operanan speciticanons specifications spec fications software
fa¥ P\ a Fol a
Faasib:tity Plans and Produrt Deta tod Develooment and test
reqQuirgments denign desar

Phages anad rnilestones

Figure 3.1 Software Cost Estimation Accuracy
Versus Phase [Ref. 19:p. 311]

method. First, the counting of the function points is prone
to subjective assessment. Second, it is difficult to collect
measurements on a specific information domain after-the-fact.
Finally, since the function point calculation 1is a
dimensionless quantity, it might convey little meaning. [Ref.

20:p. 94

E. OTHER PRODUCT ATTRIBUTES
Although size estimates are very important in developing

a cost estimation model there are several other major

17

attributes which are

also utilized.

Boehm [Ref.

21:p.

11)

identified five major attributes used in cost estimation and

the factors that measure them.

Figure 3.2 displays these

attributes and factoeors in relation to their use by the various

models described in Chapter IV.

18

SOC. TRAW, PUTNAM NCA, POEING, GRC,
GAOUP FACTOR 1908 1972 SUIn DOTY PRICES 1BM 1977 1978 COCOMO SOFCDST DSN JENSEN
SiTE SOURCE INSTAUCTIONS x x x x X x x x
ATTRIBUTES OBJECT INSTRUCTIONS x x x x
NUMSER OF AOUTINES x x
NUMRER OF DATA ITEMS x x x
NUMBER OF QUTPUT FORMATS x x
OOCUMENTATION x x x
MMBER OF PERSONNEL . x x x x x
PROGRAM T x 3 x x x x x x
ATTRIBUTES COMPLEXITY x x x x x x x x
LANGUAGE x x x x x A
REUSE x x x x x 13 » H
REOUIRED AELIABILITY X x x X x
ODISPLAY REQUIREMENTS x) § x
COMPUTER TIME CONSTRAINT x x x x x x x x x x x
ATTRIBUTES STORAGE CONSTRAINT x x x x x x x x
HARDWARE CONFIGURATION X x
CONCURRENT HAROWARE
DEVELOPMENT x X X x x x x x
WTERS ACING EQUIPMENT SW x x
PERSONNE L PERSONNEL CAPABILITY x x x x x x x
ATTRIBUTES PERSONNEL CONTINUITY x x
HAADWARE EXPERIENCE x x X X x x P X } 4 x x
APPLICATIONS E XPER(ENCE x X x x x x x x x X
LAMGUAGE EXPERIENCE x x x x ‘ x X x x
PROMCY TOOLS AND TEOMNIOUE § x * x x x x x X
ATTRIBUTES CUSTOMER INTERFACE x x x x
AECUIREMENTS DEFINITION x x x X x x
REQUIREMENTS YOLATILITY x X x x x x 3 x b
SCHEOULE X x x x x
& CUMITY x X x
COMPUTER ACCESS X x x % x x X x
TRAVEL/REHOSTINGAMIULTISITE X x x X x X
SUPFORT SOFTWARE MATURITY x X
CALIBRATION
FACTOR x x x
::ﬁ::on Mo - Cos ™ x 10 1047 CE LAY tos-12 o 12
SCHEDL L E
EOUATION tp - €’ x - ax 0.37-0.38 e QIn
Figure 3.2 Factors Used in Various Cost Models

Iv. EXISTING COST ESTIMATION MODELS

A. BACKGROUND

The following is a brief introduction of several models
that have been developed for software cost estimation. In
presenting these models it is important to note that the
majority of the models have been developed based on a
particular set of data and environmental factors. Therefore,
most of the models are not transportable unless they provide
a method for recalibration. Furthermore, a wajority of the
models require complex mathematical calculations that are very
cumbersome for the user to apply to their own situations.

There are a few models, however, that have been automated
and are commercially available. These include the SLIM, PRICE
s, ESTIMACS and SOFTCOST models. Bailey et al. [Ref. 22}
provides a detailed evaluation of many of the automated
software cost-estimation models currently available.

Further detailed explanation of each model may be found in
the original source reference listed for each model. An
overview of a majority of the models is also provided by Boehm
[Ref. 19:pp. 510-520], Londeix [Ref. 3:pp. 36-41] and
Thibod=au [Ref. 4]. The COCOMO and Function Point models are
described in detail in Chapters V and VI respectively and are

not covered in this section.

19

B. COST ESTIMATION MODELS
1. SDC Model

The SDC model was developed from a study completed by
the System Development Corporation (SDC) for the U.S. Air
Force in the mid-1960's [Ref. 23]. This study included an
extensive analysis of 104 attributes of 169 software projects.
The SDC model proved to be highly inaccurate as a cost
estimator. It raised serious doubts about the ability of a
linear cost estimation model to estimate cost. However, it
did provide valuable information and spurred new research into
the area of cost estimation.

2. TRW Wolverton Model

The TRW Wolverton model is a matrix-based model which
was developed for use at TRW [Ref. 24]. In the model,
estimates of routine size are converted to costs using cost
per instruction values that are functions of the routine type
and complexity. A matrix of ratios is used to allocate the
total cost to seven phases with each phase divided into up to
25 activities.

The essence of the model can be seen in Figure 4.1,
which is an example using the 6 categories of the model. The
chart demonstrates how the cost per object instruction is
related to the relative degree of difficulty. Relative degree
of difficulty is determined by whether a routine is considered
old or new and whether it is classified as easy, medium or

hard.

20

80 T L T T

Categories a
C = Control Tl
1 = input/output ¥
P = Pre/post processor
0 As Algorpnotshl: Category () -
D = Data management
T = Time critical processor o),

Sample range
60 exclydes upper and lower
20 percentiles

L 4
e
o sop ~
H
g
K
g of)
4
&
5
Q
New <
3c — —
b3
20+ oig -
\
Easy Medium Hard
10 : J i i
0 20 40 60 8c 10C

Relative degree of difficulty: percent of tota:
sampie experiencing this rate or less

Figure 4.1 TRW Wolverton Model: Cost
Per Object Instruction Vs.
Relative Degree of Difficulty
[Ref. 19:p. 513)

By multiplying the cost per instruction for each
routine by its number of object instructions and summing the
products for all of the routines, an estimated value for total
development cost may be obtained. This cost is then allocated
to each of the seven phases of development and their

attributes as defined by the model.

21

It is important to note that the ratios developed in
the TRW Wolverton model are only applicable for the TRW
database. Therefore, new ratios and a new matrix would have
to be developed if a different environment was to be used.

3. Putnam (SLIM) Model

The Software Life Cycle Model (SLIM) is a commercially
available costing model developed by Quantitative Software
Management, Inc. [Refs. 25; 26]). It is primarily based on the
estimating model developed by Larry Putnam in the late 1970s.
The SLIM model depends on a SLOC estimate for the project's
general size. It also uses formulas which relate software
size to cost and schedule requirements. Therefore it is not
exactly a pure form of the phenomenological model as described
by Thibodeau [Ref. 4]. However, a major portion of the model
is dependent upon relationships which follow the scientific
Rayleigh distribution curve. In particular, the model relates
the software life cycle to the Rayleigh curve.

A majority of the articles regarding the Putnam model
and how it incorporates the Rayleigh distribuiion curve may be
found in [Ref. 27]. Weiner-Ehrlich et al. [Ref. 28] provides
an additional source of information regarding the use of the
Rayleigh curve for software modeling.

The Slim model uses the following equation in

developing its estimation model:

22

Sy = G K° x t?

]
i

s source statements (code size in SLOC)

AL
1

technology constant (dimensionless usually 10040)
K = life cycle effort in man-years

t; = development time in years.

The SLIM model combines the estimation equation with
Monte Jarlo simulation, standard deviation analysis, and
Rayleigh/Norden distribution curve analysis to provide a
unigque estimate of effort and development time. One of the
bacic assumptions of this model is that manpower utilization
during program development follows the Rayleigh curve.
Therefore, manpower and cash flow rate may be obtained at any
point in the life cycle.

SLIM provides two methods for properly calibrating the
model: the user can calibrate the model by either inputting
data from completed projects, or by answering a series of 22
questions from which Slim will provide recommended calibration
entries.

4. Doty Model

In 1977, Doty Associates Inc., produced a software
cost estimation study of the software developed for the RADC
(Rome Air Development Center) [Ref. 29]. The objective of the

study was to reduce the variance between the estimated and

23

actual cost of software development. The study resulted in
the development of the Doty model.

The model is actually a set of individual models.
Each one to be used for a given type of software environment.
Equations have been developed empirically using regression
analysis for four application areas which include: command
and control, scientific, business and utility. These
equations use size inputs to estimate the number of man-months
of effort required for the program as defined by its category
type. A general set of equations is also available for
programs which do not fit into any of the four predefined
categories. The model also uses a series of 14 effort
multipliers in order to better refine the cost estimate to the
development environment. The model is considered a static,
multivariable model.

5. RCA PRICE S Model

The PRICE S model is an automated proprietary cost-
estimation model developed and maintained by PRICE Systems
Division of RCA, New Jersey [Ref. 30]. It 1is currently
available through an On-line system which can be reached by
modem over a standard telephone line. The model was primarily
designed for aerospace applications. It is considered a macro
estimation model as it uses a top-down approach throughout its
estimation development.

PRICE S uses inputs of size, type and difficulty and

a series of hypothesized relationships in order to make

24

estimates of project cost and schedule. Most inputs are
heuristic in nature as they are based on certain subjective
opinions of the user, such as:

- the cost required to produce programs,

-~ the effect on cost of changing development time,

- the comparative costs of the development cycle
elements.

Since every project is different and will take in
different inputs, the model does not have a standardized set
of equations with predetermined coefficient values for
calculating effort.

6. Walston and Felix IBM-FSD Model

This model was developed by Walston and Felix at IBM
Federal Systems Division in an attempt to measure the rate of
production of lines of code by project as influenced by a
number of product conditions and requirements [Ref. 31]. The
model is derived from a database of 60 different projects.
One of the goals of Walston and Felix was to develop an effort
estimation model based on size alone. Based on their
collected data they found 29 factors which were significantly
correlated with productivity. They incorporated these factors
into a single formula which enabled them to calculate a
productivity index. Using this productivity index and linear
regression (for calibrating their model to the environment),
they developed an ejuation for estimating productivity of new

projects.

25

7. Boeing Model

The Boeing model was developed by Boeing Computer
Services in 1977 [Ref. 32]. The model is considered to work
best for aerospace types of systems for which it estimates
total project effort. 1In estimating effort the model uses a
set of productivity rates applied to the following types of
software used in the model:

- Mathematical Operations,

- Report Generation,

- Logic Operations,

- Signal Processing or Data reduction,
- Real Time.

The Boeing model also uses estimates on the total
number of delivered instructions for developing its effort
estimation of nominal man-months. Like many other models, it
uses predetermined percentages to divide the total estimated
effort into individual effort estimates for the various life
cycle phases. Finally, the model applies effort multipliers
to the nominal effort estimates for each phase to produce an
adjusted effort estimate for each phase.

8. GRC Model

The General Research Corporation (GRC) model was
developed in 1974 [Ref. 33]. The model is a static, single-
variable model which estimates cost in a non-linear fashion.
The model uses a large number of different estimating

techniques including regression analysis. The model has a

26

number of good features which include a thorough definition of
the quantities being estimated and a set of relationships for
estimating such quantities as training and installation costs.
However, it does have a few problem areas the least of which
includes using the "number of output formats" as the basic
size parameter [Ref. 19:p. 519].

9. Other Models

In addition to the previously listed models there have
been many other software cost estimation models recently
developed, some of these include the Bailey-Basili Meta-Model
[Ref. 34], Grumman SOFCOST model [Ref. 35], Tausworthe Deep
Space Network (DSN) model and subsequent SOFTCOST model [Ref.
36], Jensen model [Refs. 37; 38], Estimacs model [Refs. 39;
40], SPQR/20 model ([Ref. 41], Before You Leap (BYL) model
[Ref. 42], and the BIS/Estimator model [Ref. 43].

Most of these models have been automated and use
either SLOC or function points as their primary input size
metric. Since the automated models are continually under
revision, the software vender should be contacted for the

latest information r:2garding the model.

C. SUMMARY

Although there are many models currently available for
estimating software cost, a model has yet to be developed
which can estimate software cost with a high degree of

accuracy. Furthermore, none of the discussed estimation

27

models appear to be conducive to DSS software. Nevertheless,

the COCOMO [Ref. 19] and Function Point [Refs. 17; 18] models
have proved to be key models in leading the research for the

development of better cost estimation models. Therefore, they

lend themselves as the best candidates to be tailored to the

DSS environment. These two models will be presented in the

following two chapters.

28

V. COCOMO MODEL

A. OVERVIEW

The COCOMO model which stands for COnstructive COst MOdel
was developed by Barry Boehm and is covered in great detail in
[Ref. 19]. Based on his analysis of 63 software development
projects, Boehm developed a model that relates SLOC inputs to
effort. The COCOMO model consists of three separate forms of
the model: Basic, Intermediate, and Detailed. Each model is
further broken down into three modes of software development:
organic, semidetached and embedded. These modes are used to
identify the development environment and general characteris-
tics of a software project such as size and complexity.

The ICEM model, presented in Chapter VII, will automate
the functions of the Basic and Intermediate models. Since the
Detailed model will not be implemented in ICEM it is not

discussed in this chapter.

B. BASIC MODEL

The Basic COCOMO model is used to make quick, early, rough
order of magnitude estimates of small-to-medium-sized software
projects. The Basic model uses an estimated number of
thousands of delivered source instructions (KDSI), and the
development mode to estimate the development time and cost of

a software development project.

29

Source instructions are defined as executable lines of
code which include variable declarations, format statements
and job control language but not comment statements [Ref.
19:p. 59]. All COCOMO models rely on fairly accurate
estimates of KDSI in order to make accurate estimates.

As previously mentioned, the development mode of a project
is determined by its characteristics such as size, complexity,
and design environment. A summarized list of Boehm's criteria
[Ref. 19:pp. 78-82] for the different modes follows:

- ORGANIC MODE
* Generally stable development environment,

* Minimal need for innovation in architectures of
algorithms,

* Relatively low premium on early completion of the
project,

* Relatively small size, usually not greater
than 50 KDSI,

* Small experienced software development teams used,
* Loose coupling with external systems.

- SEMIDETACHED MODE
* Mixture of organic and embedded characteristics,

* Intermediate level of experience with related
systens,

* Wide mix of experienced and inexperienced people,

* Some experience with aspects of system under
developnment,

* Software project range usually not greater
than 300 KDSI.

30

- EMBEDDED MODE

*

*

*

Software development within tight constraints such
as time and cost,

Integral part of some larger system, heavily
embedded and strongly coupled to it,

Numerous interface requirements,
High required reliability,

Requires much innovation.

The Basic COCOMO effort estimating equations as

separated by mode are as follows:

where:

Organic Mode MM 2.4 (KDSI)?

Semidetached Mode MM

3.0(KDSI)?! 12

Embedded Mode MM 3.2(KDSI)?!2°

MM man-months of development effort

KDSI thousands of delivered source instructions.

]

These equations are used primarily to obtain an estimated

number of man-months required for project development. Labor

cost is not directly calculated due to price variances among

organizations. However, labor cost may easily be obtained by

multiplying the man-month values by an appropriate average

man-month salary. It is recommended that the average man-

month salaries be calculated separately for each major phase.

31

If desired an hourly rate can be determined by setting a man-
month equal to 150 man-hours per month. [Ref. 19:p. 59)

The development period covered by COCOMO, for which the
above equations apply, begins at the beginning of the product
design phase and ends at the end of the integration and test
pr.ase. The COCOMO model provides a method for dividing total
cost among these phases and additionally provides equations
for estimating annual software maintenance cost. These issues
are covered in detail in [Ref. 19] and will not be discussed
further.

In addition to providing man-monch estimates the Basic
COCOMO model also provides Development Time or (TDEV)
estimates. TDEV represents the number of months required for
project completion. It is often referred to as development

schedule and is calculated from the following formulas:

Organic Mode TDEV = 2.5(MM)°% 3"
Semidetached Mode TDEV = 2.5(MM)°%*°
Embedded Mode TDEV = 2.5(MM)°¢
where:
TDEV = development time in months
MM = man-months as previously calculated.
32

.
“

C. INTERMEDIATE COCOMO
One of the drawbacks in using the Basic model is that it
is limited in accuracy because it does not take into account
many factors which can effect software cost. Some of these
factors include differences in hardware constraints, personnel
quality and experience, and use of modern tools and
techniques. The Intermediate COCOMO model was developed to
incorporate these and other project attributes which are known
to have a significant influence on software cost. The intent
of adding these factors is to improve the accuracy of the
model. The Intermediate model uses 15 cost drivers to make
these adjustments. These cost drivers are grouped into four
categories:
- Product attributes

* RELY-~required software reliability,

* DATA--data base size,

* CPLX--product complexity.

- Computer attributes

* TIME--execution time constraint,

* STOR--main storage constraint,

* VIRT--virtual machine volatility,

* TURN--computer turnaround time.

- Personnel attributes

* ACAP--analyst capability,
* AEXP--applications experience,

* PCAP--programmer capability,

33

* VEXP~-virtual machine experience,

* LEXP~-programming language experience.
- Project attributes

* MODP~-modern programming practices,

* TOOL--use of software tools,

* SCED~-required development schedule.

Each cost driver 1is ranked on a scale indicating its
importance to a particular product. Figure 5.1 displays the
ranking scale and their corresponding values with respect to
the various cost drivers. Boehm [Ref. 19:pp. 119-122]
explains how to properly rank each cost driver.

Once all of the values for the cost drivers are obtained
they are multiplied together to obtain a single product called
the Effort Adjustment Factor (EAF). This factor is then
applied to the effort equation to obtain an adjusted man-month
calculation.

The development modes for the Intermediate model are the
same as those for the Basic model. However, the effort
equations vary slightly from the Basic model and are as

follows:

Organic Mode MMn 3.2(KDSI)?! %

Semidetached Mode MMn

il

3.0(KDSI) 2

Embedded Mode MMn 2.8 (KDSI)1%°

where:

34

Very Very Extra

Cos! Drivers tow Low Nominal High High High
Product Attributes
RELY Required software reliability .75 88 1.00 1.15 1.40
DATA Oala base size 84 1.00 1.08 1.16
CPLX Product compiexity .70 .85 1.00 1.15 1.30 1.65
Computer Attributes
TIME Execution time constrainl 1.00 1 1.30 1.66
STOR Main storage constraint 1.00 106 .21 1.56
VIRT Virtual machine volatility® .87 1.00 1.15 1.30
TURN Computer turnaround time 87 100 1.07 1.15
Personnal Altributes
ACAP Analys! capability 1.46 1.19 1.00 86 KAl
AEXP Applicalions experience 1.29 1.13 1.00 R:2} .82
PCAP Programmer capabihty 142 1.7 1.00 .86 .70
VEXP Virtual machine experience*® 1.21 1.10 1.00 .90
LEXP Programming language experience 1.14 1.07 1.00 95
Project Attributes
MODP Use of modam programming practices 1.24 1.10 1.00 91 .82
TOOL Usa of soltware tools 1.2¢ 110 1.00 8 83
SCED Required developmenl schedule 123 108 1.00 1.04 1.10

*For a given software product, the undertying virtual machine is the complex o! hardware and software (OS.
DBMS, efc) it calls on to accomphsh its tasks

Figure 5.1 Software Development Effort Multipliers

(Ref. 19:p. 118]

MMn = Nominal man-months of development effort.

The effect of the cost drivers is factored into the effort

equation by multiplying the nominal man-months by the EAF:

MMadj = MMn * EAF

where:

MMadj = man months adjusted.

35

The schedule formulas by mode are the same as for the

Basic model.

D. CALIBRATING THE COCOMO MODEL

The term calibration is used to mean that new coefficients
or multipliers for an existing model are established or
modified such that the same model structure applies to a
database or an individual system corresponding to an
environment other than the one upon which the model was
developed.

In general, the COCOMO model was developed for most
software cost estimations situations. However, by calibrating
the COCOMO model to the user's specific environment the
accuracy of the model can be greatly increased. Boehm [Ref.
19:pp. 524-528] provides two ways to calibrate the COCOMO
model. The easiest way 1is to first determine the most
appropriate development mode to be used. Then a least-squares
approximation technique is used to recalculate the constant

term (c) in the development mode's effort equation:

MM = c(KDSI)®(EAF)

The least-squares technique produces the following equation

which is used to calculate the new constant (c):

36

where:
MMi = actual man-months of effort
Q; = (KDSI,)”(EAF,)

b scale factor for mode

n number of projects in database.

The second method for recalibrating the COCOMO model uses
a similar least~squares method for calibrating both the
coefficient term (c) and the scale factor (b). These values
are recalibrated to the user's environment by using the

following equation:

a,d,-a,d;

logec = —£ >
Q,a,-4a;
a,d,-a,d

b= o~ 10

4
a,a,-aj

where:

the quantities a,, a,, a,, d;, and 4, are calculated as:

37

a, = n
n

a, = Y log(KDSI);
=0
n

a, =y [log(KDSI),]?
i=0

n

d, = Y, (MM/EAF)

i=0

di = Y log (MM/EAF); log (KDSI)
=

As is apparent, neither of these methods provides a way to
recalibrate the cost driver rating values. Unfortunately, the
only method to recalibrate the cost drivers is through trial
and error and this is not recommended due to the multiplica-
tive nature of the EAF factor.

The ICEM model presented in Chapter VII uses this least-

squares method in order to recalibrate the model to the unique

environment of Decision Support Systems.

38

VI. FEUNCTION POINT ANALYSIS MODEL

A. BACKGROUND

In 1979, Alan Albrecht of IBM developed the method of
Function Point Analysis [Ref. 17], to help measure the size of
a computerized business information system. He found that he
could not successfully use the SLOC method to determine size
measurements which were needed as an input component for
effort and productivity estimates. As an alternative to using
SLOC, he developed the Function Point Analysis method. He
further revised and refined his method in 1983 [Ref. 18].

As previously mentioned, there are very few cost
estimation models that can be applied relatively early in the
systems development life cvcle. This is because they rely on
metrics that can only be applied in the post~code phase of
development such as SLOC. The function point metric is an
exception to this rule.

By being able to make estimates early in the development
process one can continue to refine the cost model throughout
life cycle development. Furthermore, early estimates can
improve scheduling and reduce cost. Another advantage of the
function point metric is that, unlike SLOC, it is unaffected

by the choice of programming languages used.

39

B. CALCULATING FUNCTION POINTS

In addition to Albrecht's articles, there have been
several noteworthy publications written which provide a step
by step method for calculating function points. Brian Dreger
[Ref. 44] provides a highly-detailed guideline for calculating
function points while Roger Pressmen [Ref. 20] provides an
easy to use table format. Figure 6.7 provides a similar
format to be used as a worksheet for making function point
calculations.

The method for calculating function points involves a four
step process:

- Count the unique number of occurrences of the five user
function types,

- Classify each function type according to its level of
complexity,

- Adjust for processing complexity,

- Make the function points calculation.

C. (STEPS 1 & 2) COUNT AND CLASSIFY FUNCTION TYPES
Five types of functions are counted as function points:
- Inputs.
- Outputs,
~ JInquiries,
- VFiles,
- Interfaces.
Each of these functions are classified according to

three levels of complexity:

40

- Simple,
~ Average,

- Conmplex.

These complexity factors are further associated with a
particular weighting factor which is used in (Step 3) to
adjust the values of the five individual function counts.

1. Measuring Inputs

In measuring inputs, each unique user data or control
input that is performed by the user within the application in
order to add, delete or update something should be counted.
An input is considered unique if it has a different format,
such as a different input screen, or it has the same format as
another input but uses different processing 1logic (same
entities are modified in a different way). Inputs should be
distinguished from inquiries, which are counted separately.
After the number of inputs are counted they are classified
according to their complexity.

a. Classifying Inputs

Classifying inputs for complexity depends on two
things: the number of files referenced or accessed (see
measuring files below) and the number of data items (fields or
specific variables) referenced. It is important to note that
only the data items actually updated by the input transaction
are counted. Data items which reside in the same file but are
not referenced are not counted. The complexity level and

associated weighting factor is selected by cross-referencing

41

the numbers of files referenced to the number of data items
referenced. Figure 6.1 is used to determine the complexity

level and the corresponding complexity weighting factor.

1-4 data items 5-15 16 or more
referenced data items
0 or 1 file(s) Simple (3) Simple (3) Average (4)
referenced
2 files Simple (3) Average (4) Complex (6)
referenced
3 or more Average (4) Complex (6) Complex (6)

files ref.

Figure 6.1 Classifying Inputs

From this chart it may be seen that ten data items
accessed from two files would be classified as "average" in
‘complexity and given a weighting factor of four.

2. Measuring Outputs
In measuring outputs, each unique user data or control
output procedurally generated that leaves the application
boundary should be counted. This includes reports and
messages to the user, as well as outputs to other applica-
tions. Uniqueness has the same implications for outputs as it
does for inputs.
a. Classifying Outputs
Outputs are classified in a similar format as

inputs. However, the actual numerical values for the various

42

entries have been changed. Only the files and individual data
items accessed during output are counted. Figure 6.2 is used
to obtain the complexity level and corresponding weighting

factor for outputs.

1-5 data items 6-19 20 or more
referenced data items
0 or 1 file(s) Simple (4) Simple (4) Average (5)
referenced
2-3 files Simple (4) Average (5) Complex (7)
4 or more Average (5) Complex (7) Complex (7)

files ref.

Figure 6.2 Classifying Outputs

3. Measuring Inquiries

In measuring inquiries, each unique input/output
combination in which the on-line user-defined input causes and
generates an immediate on-line output by the application
should be counted. Inquiries may also be provided to other
applications. Many inquiries are simply requests for specific
data from a data base. An inquiry is considered unique if it
has a format different from others in either its input or
output portions or it has the same input and output format but

requires different processing logic in either.

43

a. Classifying Inquiries

Classifying inquiries consists of two parts:
classifying the inputs and classifying the outputs. The same
charts are used for inputs and outputs as before. The only
difference is that while a stand-alone input actually updates
the data store, an inquiry only directs the search and never
updates. Once the two complexity factors are obtained for
outputs and inputs the two are compared with the larger value
being selected as the weighting factor for the inquiry
function.

Figure 6.3 1is used to obtain the respective
classification and weighting factor for the input part of the
ingquiry function, while Figure 6.4 is used to obtain the
output factor. The larger value of the two is used as the

factor for the inquiry function.

Input part: 1-4 data items 5-15 16 or more
referenced data items

0 or 1 file(s) Simple (3) Simple (3) Average (4)

referenced

2 files Simple (3) Average (4) Complex (6)

referenced

3 or more Average (4) Complex (6) Conmplex (6)

files ref.

Figure 6.3 Classifying Inquiries (Input)

44

Output Part: 1-5 data items 6-19 20 or more

referenced data items
0 or 1 file(s) Simple (4) Simple (4) Average (5)
referenced
2-3 files Simple (4) Average (5) Complex (7)
4 or more Average (5) Complex (7) Complex (7)

files ref.

Figure 6.4 Classifying Inquiries (Output)

4. Measuring Files

Measuring the number of files 1is not as simple as
just counting the number of physical files in an application.
Rather, only files that contain data stored in 1logical
groupings within the application are counted as files. These
files perform data storage functions for the application.
Furthermore, files or data stores are to be considered in the
logical not physical sense. A physical file can actually
contain many logical files. Every unique data access, path or
view of a database is considered a collection of information
and is counted as a separate logical internal file. However,
temporary data stores are excluded from this count as only
permanent files are counted. Additionally, transactions that
trigger internal logical files to be updated or changed are
not considered files themselves.

It is crucial that the number of logical internal

files be properly counted. Typically, every logical file will

45

have at least one input, output, and inquiry. This
corresponds to at least 18 points when complexity adjustments
are added (seven file, three input, four output, and fcur
inquiry).
a. Classifying Files

Like the otheir classifications, classifying files
is a two-step process. First the number of data items
actually required by the application are counted and then
either the number of record formats within the file or the
number of logical relationships in which the file part.icipates
are counted. It is important to recognize that only logical
relationships are used; therefore, the number of different
record types within a file are not simply counted but also
their logical relationships as well. Figure 6.5 is used to

determine the complexity level and weighting factor for files.

1-19 data 20-50 51 or more
items ref. data items
1 logical record Simple (7) Simple (7) Average (10)
format/relation-
ship
2-5 logical Simple (7) Average (10) Complex (15)
record format/
relationships
6 or more Ave. (10) Complex (15) Couplex (15)
logical record
format/relation-
ships

Figure 6.5 Classifying Files

46

5. Measuring Interfeces

I.terfaces 1involve using data stored by another
application but used by the current application. In measuring
interfaces count every major logical file (as previously
defined) within the application boundary that is sent to,
shared with, or received from another application. Files
shared between applications are counted as both files and
interfaces within each application if they are used in both.
This includes data stores that are imported, exported or
shared between the two applications. Interface does not
involve transaction. An application must be able to access
the data directly without the aid of another application for
it to be counted as an interface.

a. Classifying Interfaces

The classification scheme used for interfaces is
similar to the one used for files. As Figure 6.6 demonstrates
the number of data items referenced (and actually used) and
the number of logical relationships in which the interface
file participates to meet application requirements are used to

obtain the complexity level and weighting factor.

47

1-19 data 20-50 51 or more
items ref. data items
1 logical record Simple (7) Simple (7) Average (10)
format/relationship
2-5 logical Simple (7) Average (10) Complex (15)
record format/
relationships
6 or more Ave. (10) Complex (15) Complex (15)

logical record
format/relationships

Figure 6.6 Classifying Interfaces

D. (STEP 3) ADJUST FOR PROCESSING COMPLEXITY

Adjusting for processing complexity is a simple task:
sinply multiply the measured value for each function (count)
by its corresponding weighting factor. Figure 6.7 provides a
worksheet for developing function points and shows how the
weighting factor 1is incorporated into the process of

calculating the function point value.

48

% Weighting factor 4§ |
| Function Count ! 1
{ Simple Avg. Complex 5 FP }
| Inputs ’ 3 4 6 % ;
{ Outputs i 4 5 7 E |
i Inquiries | 3 4 | 6 § |
i Files 3 7 ! 10 } 15 |
; Interfacesi § 5 i 7 ; 10 | |
%Count X weighting factor = FP’ Sum of all FP = |

[

Figure 6.7 Function Point Worksheet

E. (STEP 4) MAKE THE FUNCTION POINTS CALCULATION
To make the total adjusted function points calculation

(FP) the following equation is used:

FP = (Sum of FP counts) X [0.65 + (0.01 X SUM(Fi))]

where (Sum of FP counts) is the total sum of FP counts
obtained from above and the SUM(Fi) is the sum of 14
complexity adjustment values (where i = 1-14) obtained by
answering the questions in Figure 6.8 according to the ranking

scale provided.

49

Rate each factor on a scale of 0 to 5:

0 1 2 3 4 5

| | | |

No I ‘ | l
influence Incidental Moderate Average Significant Essential

Fi:

1. Does the system require reliable backup and recovery?
2. Are data communications required?

3. Are there distributed processing functions?

4., Is performance critical?

5. Will the system run in an existing, heavily utilized
operational environment?

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input
transaction to be built over multiple screens or
operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

12. Are conversion and installation included in the design?

13. Is the system designed for multiple installations in
different organizations?

14. Is the application designed to facilitate change and
ease of use by the user?

Figure 6.8 Complexity Adjustment Factors

50

F. SUMMARY

The four step method we have followed has only one goal in
mind, to calculate a single function point number. It is
important to note that this number is only a representation of
the size of the project. Like SLOC it is only used as a
sizing metric and therefore does not yield an effort
estimation directly. However, as demonstrated by Albrecht and
Gaffney in 1983 [Ref. 18], one can use simple 1linear
regression on a data set of projects to estimate man-months as
a function of the function points. This is the method used in

developing the ICEM model.

51

VII. INTELLIGENT COST ESTIMATION MODEL (ICEM)

A. INTRODUCTION

The ICEM model is an integrated automated package which
utilizes an expert system coupled with a spreadsheet to
perform cost estimation. The model was developed as an
initial prototype system. It is not intended to be an all-
inclusive model ready to be implemented within an organiza-
tion. Rather, it is used to analyze existing methodologies
and promote the development of integrated cost estimation
models which incorporate expert system technology.

One of the key factors in accurately estimating cost is
user experience. All too often this experience is lost when
personnel transfer. The ICEM model is considered intelligent
because it uses an expert system to collect and process
heuristic data. An expert system s used because it enables
an organization to capture the talent and experience of its
key personnel [Ref. 45:p. 332]. By using an expert system as
the foundation for the model we hope to promote the capturing
of this experience so it can be used in designing and
continually upgrading an effective cost estimation model.

Additionally, the expert system enables the quick
development of a very user~friendly system. The expert system
uses a simple question and answer format to collect data for

its parametric models. This eliminates the need for the user

52

to perform exhaustive searches through data tables to obtain
appropriate data values which must then be applied to
equations for manual calculations.

The main problem with almost all of the cost estimation
models discussed in Chapter IV 1is that they are poor
estimators. This point was emphasized by Boehm [Ref. 19:p.
32] who said:

Today, a software cost estimation model is doing well if
it can estimate software development cost within 20% of the
actual costs, 70% of the time, and on its own home turf
(that 1is, within the class of projects to which it is
calibrated).

Most of this low accuracy rate is due to undersizing.
But, even as weak as these cost estimation models may appear,
they still offer marked improvements over previously used
manual methods and if properly used can be very beneficial.

In an effort to improve the accuracy of the estimating
process the ICEM models incorporates the concepts developed by
the COCOMO and Function Point models into an integrated model.
These two models were selected based on their popularity and
success [Ref. 5]. Also these two models proved ideal because
they utilize two very dissimilar estimating methods and
incorporate two different size metrics (SLOC and Function
Points) for their primary input. For the purpose of consis-
tency checking it is important to have as much independence in
the estimating methods as possible.

The ICEM model is actually three models in one. The

COCOMO Intermediate model has been automated for all modes of

53

operation including organic, semidetached and embedded modes.
The second model specifically tailors the COCOMO organic mode
for the DSS environment. The organic mode was considered
because of the characteristics of the empirical database which
is used to calibrate the model. The third model includes a
parametric model which incorporates the Function Point size
metric.

In order for any cost estimation model to be useful in an
environment other than the one in which it was developed, it
must be calibrated to the new environment. One of the
requirements for tailoring a cost estimation model to a new
environment is to have a proper database. To ensure
statistical quality, a database of at least ten projects
unique to the new environment is recommended as a starting
point. The ICEM model is calibrated to the Decision Support
System (DSS) environment by using a database set of 13 DSS

projects.

B. OVERALL ARCHITECTURE OF ICEM

The architecture of the ICEM model is displayed in Figure
7.1. VP-Expert, developed by Paperback Software Internation-
al, provides the primary interface with the user. Although
several expert systems are currently on the marketplace today,
VP-Expert was selected based on its low cost, ease-of-use,

powerful expert system capabilities, and ability to be easily

54

coupled with spreadsheet (VP-Planner) and database (VP-INFO)

systemns.
user
interface
VP-Expert user VP-Planner Plus
interface user interface
interence engine spreadsheet
ICEM1.WKS m
ICEM2.WKS

Figure 7.1 ICEM Architecture

1. VP-Expert

VP-Expert consists of three parts: a user interface,

a knowledge base, and an inference engine. The user

55

interface allows the user to communicate with the expert
system through the keyboard and screen display. In VP-Expert,
the knowledge base is stored in files that have the extension
".KBS." The knowledge base itself is composed of three
sections: actions block, rules block, and questions block.

The actions block of the knowledge base provides
directions to the expert system for finding a particular
solution to a problem. It controls the flow of the program.
On the other hand, the rules block contains the rules that
tell VP-Expert how to solve a specific problem. It consists
of three key words: RULE, IF, and THEN. The questions block
provides questions to ask the user if VP-Expert needs more
information.

Finally, the inference engine contained in VP-Expert
provides decision-making intelligernce. The inference engine
uses the rules in the rule base in order to make decisions on
how to solve a problem. Typically, an expert system's
inference engine can use two methods for processing the rule
base, either forward chaining or backward chaining. The ICEM
model was developed to employ a backward chaining strategy for
problem solving.

The ICEM model incorporates two knowledge bases,
ICEM1.KBS and ICEM2.KBS, which have been chained together.
One of the main problems with using a rule-based expert system
is that depending on the size of the rule base the system

could require a considerable amount of memory usage. In order

56

to get around this memory barrier VP-Expert allows two rule
bases to be chained together.

In VP-Expert, when a knowledge base is chained to a
second knowledge base, variable values are first stored in a
temporary file using the "SAVEFACTS" command. The second
knowledge base (with its new rule base) then replaces the
first rule base in memory. Finally, it recovers the stored
variable values using the "LOADFACTS" command. This method
saves considerable memory by swapping knowledge bases and
their accompanying rule bases.

One minor inconvenience of using the "SAVEFACTS"
command is that it will save the value of every variable used
by any portion of the expert system resulting in irrelevant
data passing from one knowledge base to another. 1In order to
eliminate unnecessary data passing all variable values can be
cleared from memory using the "RESET ALL" command and then
pertinent variables can be assigned specific values before
using the "“SAVEFACTS" command. By using the "RESET ALL"
command and chaining its two knowledge base files (ICEM1.KBS
and ICEM2.KBS) together, the ICEM model is able to save
considerable memory thus enabling it to operate within the
boundaries of conventional memory. Further information about
VP-Expert and its command language may be found in [Ref. 46].

2. VP-Planner Plus

As shown in Figure 7.1, VP-Expert is coupled to VP-

Planner Plus. VP-Planner Plus is a spreadsheet program also

57

developed by Paperback Software International. It is used to
provide automated statistical calculations and display effort
and schedule information in a format easily understood by the
user. It 1is fully automated and allows instantaneous
sensitivity analysis to be performed by the user. All
variable values are passed from VP-Expert to VP-Planner using
the "PWKS" command. Although this command works relatively
well, it has a tendency to be time-consuming. It takes
approximately 20-30 seconds to save values to the spreadsheet
using an IBM compatible 386 while a 286 machine may take one
to two minutes for processing.

Although there are many advantages to linking VP-
Expert to VP-Planner there is also one additional disadvan-
tage. When the two programs are linked together they are
essentially running simultaneously. Therefore, almost twice
the amount of memory is required than if only one of the
programs was running at a time. This posed a significant
challenge in trying to keep the memory usage under 600Kk.
Unfortunately, there is no way around this problem. VP-Expert
does not offer a method to call a specific spreadsheet using
VP-Planner unless VP-Expert is running in the background.

All user data are saved in spreadsheet files that end
with the ".WKS" extension. Further information about VP-
Planner Plus and its related commands may be found in [Ref.

47].

58

VIII. USING ICEM FOR EFFORT ESTIMATION OF DSS SOFTWARE

A. INTRODUCTION

The purpose of this chapter 1is to use ICEM as a DSS in
order to estimate the amount of effort required to develop PC-
based DSS. As discussed earlier, ICEM combines the COCOMO
model and the Function Point models. But before these models
can be incorporated into ICEM, it is first necessary to
recalibrate their estimated coefficients to take into
consideration environmental factors related to DSS.

As can be seen later in this chapter, recalibration is
particularly necessary, especially when you consider that the
original coefficients developed by Boehm for the COCOMO model
were derived from large-scale projects using second generation
programming language (2GL) that were developed two decades
ago. On the other hand, the majority of DSS are developed by
small programming groups using either third or fourth
generation programming languages (4GL).

Although ICEM was designed to incorporate both the COCOMO
and function points methodologies, only the COCOMO model has

been calibrated due to the unavailability of empirical data.

B. THE DSS DATABASE
The DSS database, which the ICEM model uses for calibra-

tion, comprises 13 DSS projects which were built at the Naval

59

Postgraduate School (for more information regarding these
projects, contact the thesis's advisor). All of these DSS
were developed under the conditions described by the COCOMO
organic mode (see definition, Chapter V, Section D). Table
8.1 reproduces the data points for the various DSS projects.

A brief description of each of the 13 DSS project follows.

TABLE 8.1

DSS DATA POINTS

Project . Language KDSI | EAF : fact #dev
CO-0OP ! Turbo Pascal' 16.0 ' 0.94 15.0 1
INTEG ~ Basic 3.0 ' 1.15 7.0 2
CEA . Turbo Pascal 9.0 0.990 7.0 1
TAO . Exsys P 4.0 0.85 6.0 1
CEASAR -~ Exsys 5.0 0.98 5.0 1
NURSE - Turbo Pascal 5.0 1.26 9.5 1
ASDB - dBase III . 6.0 1.00 6.5 z
COCOMO - Knowledgeman 3.0 1.30 7.5 ¢
NAVAIR - dBase III 2.5 0.90 6.5 3
CAI ' dBase III 2.5 1.50 8.0 2
STOCKPT . VP-Expert 6.0 1.00 4.0 1
DIST.ES VP-Expert . 6.5 1.10 3.0 1
TOUCHSTONE Turbo Pascal™ 9.5 1.00 8.0 2

l. Co-0Op
Co-Op is a group DSS for multiple-criteria decision
making. Co-Op contains a set of techniques of aggregation of
preferences and consensus seekig algorithms that can be used
in conjunction with individual multiple criteria decision

models.

60

2. INTEG
INTEG 1is a Software package to assist in the
instruction of an introductory graduate 1level course in
probability and statistics. INTEG is designed to increase
student productivity during time spent on learning various
problem~ solving techniques.
3. CEA

CEA is a DSS for cost-effectiveness analysis for

control and security of computer systems. CEA is geared to
help the EDP manager: (i) identify alternative sets of
control activities, (ii) evaluate and <choose the most

preferred set, and (iii) monitor and upgrade the security of
EDP system frequently.
4. TAO
TAO is a rule-based system to help Tactical Action
Officers (TAO) to assess the threats of enemy's weapon systems
and to determine appropriate c-unt.- measures during a naval
engagement.
5. CEASAR
CEASAR is an expert system -_. computerize the manual
assignment selection system for Army commissioned officers at
the Military Perconnel Center (MILPERCEN). The system is
designed to minimize adversary relationships that often exist
between officers in the field and their assignment specialists

from the U.S. Army Military Personnel Center.

61

6. NURSE
NURSE is an expert system to automate the Nursing
Diagnosis, Nursing Care Plan and Patient Classification Level.
NURSE passes this information to another program to determine
nursing staffing.
7. ASDB
ASDB is a DSS to support the management and
accountability of *the property of an academic department.
ASDB is an intelligent DBMS that provides customized reports
including custodian listings, quarterly reports, and property
reports.
8. COCOMO
COCOMO is a DSS to perform sensitivity analysis of the
COCOMO models including phase distribution calculation for
development or maintenance, activity distribution by phase for
development, and report generation.
9. Navair
Navair is an automated evaluation tool to estimate
Aircraft System Test and Evaluation (AST&E) efforts. A
relational DBMS is coupled with a statistical software package
to estimate AST&E cost drivers and physical/performance
characteristics.
10. CAI
CAI 1is an intelligent computer-aided instruction

software system based on the Baysesian Probabalistic Model.

The system is able to function beyond the usual stand-alone
mode through interfacing with an external DBMS.
11. Stock Point Expert System

The Stock Point Expert System is an expert system for
causative resear:h in inventory management. Four technical
areas of causative research are implemented using four
separate knowledge bases. The Stock Point Expert System seeks
to improve productivity and assists with training in the
causative research area of inventory management.

12. Distributed Expert System

The Distributed Expert System is a distributed expert
system to provide the submarine Ship's Duty Officer (SDO)
preventive maintenance expertise for the safe and effective
execution of all maintenance aboard ship. The preventive
maintenance knowledge is drawn from a variety of sources of
expertise stored in different knowledge bases that are
physically dispersed in a network of personal computers.

13. Touchstone

Touchstone is a criteria development program for group
DSS. Based on the Delphi brainstorming technique, Touchstone
is a text-based GDSS to help group members generate problems

and explore solutions.

C. CALIBRATING THE COCOMO MODEL FOR DSS
Using ICEM and its 13-project DSS database, the calibrated

Intermediate COCOMO equation is shown below:

63

MM = 1.69 KDSI'°> * EAF.

Table 8.2 reproduces the estimated efforts (MMest) and the
adjusted effort values (MMadj), wusing the calibrated
Intermediate COCOMO model incorporating the above equation.
The Effort Adjustment Factors (EAFs) were derived from close
observations of the projects. Detailed description of the
conditions under which these software were developed can be
found in the related technical reports or theses (for more
information regarding the computation of the cost drivers,

contact the thesis' advisor).

TABLE 8.2

EFFORT ESTIMATES USING CALIBRATED INTERMEDIATE
ORGANIC COCOMO MODEL

Project KDSI EAF MMest = MMadj 2ERR
COo-0P 16.0 0.94 ; 13.72 ‘ 12.89 ~14.00
INTEG 3.0 1.15 3.88] 14.46 ~36.00
CEA 9.0 0.90 8.89 ‘ 8.00 14.00
TAO 4.0 0.85 4.82 ‘ 4.10 ~31.60
CEASAR 5.0 0.98 5.70 5.59 11.80
NURSE 5.0 1.26 5.70 7.18 ~24.40
ASDB 6.0 1.00 6.54 | 6.54 ‘ .62
COCOMO 3.0 1.30 3.88 ; 5.04 -32.80
NAVAIR 2.5 0.90 3.38 ; 3.04 ‘ -62.00
CAT 2.5 1.50 3.38 ‘ 4.22 ‘ 5.50
STOCKPT 6.0 1.00 6.54 6.54 i 118.00
DIST.ES 6.5 1.10 6.59 : 7.65 -4.30 |
TOUCH 9.5 1.00 9.26 ‘ 9.26 42.40 %
% Mean Error = -1.0%

Sum of the squared errors = 72.22

64

Table 8.3 reprocduces these efforts using Boehm's Inter-
mediate Organic COCOMO model which has not been calibrated to

the DSS environment.

TABLE 8.3

EFFORT ESTIMATES USING NON-CALIBRATED INTERMEDIATE
ORGANIC COCOMO MODEL

[7 T T !

| Project KDSI ' EAF | MMest MMadj | %ERR |

. CO-OP . 16.0 | 0.94 58.81 55.28 . 268.53

' INTEG | 3.0 | 1.15 10.16 11.66 66.57

~ CEA | 9.0 | 0.90 32.14 28.93 313.29 |

. TAO | 4.0 | 0.85 13.72 11.66 94.33 |

~ CEASAR 5.0 | 0.98 17.34 16.99 | 239.80 |

. NURSE 5.0 & 1.26 17.34 21.85 | 130.00
ASDB 6.0 | 1.00 21.00 21.00 | 223.08
COCOMO 3.0 . 1.30 10.14 13.18 75.73 |
NAVAIR 2.5 | 0.90 8.38 7.54 -5.75 |
CAI 2.5 | 1.50 8.38 12.56 ' 214.00 |

' STOCKPT 6.0 | 1.00 21.00 | 21.00 600.00

' DIST.ES 6.5 | 1.10 = 22.84 | 25.12 214.00
TOUCH 9.5 : 1.00 ' 34.02 | 34.02 423.38

% Mean Error = 219.77%
Sum of the squared errors = 4143.88

D. DISCUSSIONS
Based on the data gathered in Tables 8.1, 8.2 and 8.3, a
number of observations can be made:

- As expected, estimations using the calibrated model is by
far much more closer to actual figures. The percentage
means of errors are -1% and 220% for the calibrated and
non-calibrated models respectively. The sum of the
squared errors drops from 4143.88 to 72.22 when using the
calibrated model.

~ Actual MMs of DSS projects using software generators such
as expert systems shells (i.e., VP-Expert, Exsys), data

65

base management systems (dBase III), or spreadsheet
(i.e., Knowledgeman) are significantly 1lower than
estimated MM. This suggest that DSS generators do help
increase software productivity. The difference in using
4GL as opposed to 2GL was demonstrated by Verner and
Tate, who found that using 4GL to build a DSS reduced
development effort and schedule compared with Cobol in
all phases of the life cycle except the requirements
phase. [Ref. 48]

The data also suggest that small-size, organic DSS,
projects developed by one person appear to require less
effort than those involving more than one person. The
COCOMO effort adjustment factor (EAF) does not take into
consideration the number of people associated in the
software development. It is suspected that interpersonal
communications as well as coordination and division of
labor contributed to these discrepancies. However, it is
not evident that there is a direct linear relationship
between the number of personnel working on a project and
the total MM required.

A final comment relates to the experience in counting
function points for the 13 DSS. Unlike SLOC measure-
ments, ex-post data gathering for function points has
proved to be much more difficult. It is believed that
this process would have been much easier and more
accurate if data had been gathered during the early
phases of the software development. Additionally, the
Function Point model appears to be more adapted to be
used in a structured analysis setting where one can use
Data Flow Diagrams (DFDs) and Entity Relationship
Diagrams (ERDs) for data gathering purposes. Unfortu-
nately, none of the projects 1in the DSS database
incorporated structured analysis techniques in their
development. This made data gathering mnuch more
difficult and inaccurate.

66

IX. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this thesis was to provide a tool to
facilitate the tailoring of software effort estimation tools
to the small-scale, organic DSS environment. The most popular
cost estimation models were reviewed in Chapters IV, V and VI.
It was found that none of these techniques were conducive to
a DSS software development environment.

ICEM was implemented as a workbench to calibrate the
COCOMO and the function point metrics for DSS (Chapter VII).
Using a database of 13 projects, a calibrated COCOMO model was
derived (Chapter VIII). As expected, the study has found that
the calibration was a critical condition when using parametric
models. The findings also revealed some weaknesses of the
COCOMO models for DSS effort estimation.

Because of the inherent inaccuracies of estimation tech-
niques, a model that can consistently estimate the effort and
cost of software development with a high degree of accuracy
still does not exist. However, by using a combination of
modeling tools particularly tailored to the user's environ-
ment, better estimates can be made.

Cost estimation models should not be implemented with the
intent of replacing the experienced estimator. Rather they

should be used as a tool to assist the estimator. They should

67

be used to reinforce the estimator's decisions not replace
them. They can be also be used to perform sensitivity
analysis and to keep track of the evolution of the cost

patterns. ICEM was implemented with this concept in mind.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

The calibrated equation for DSS proposed in Chapter VIII
proved to be much more accurate than the original COCOMO
equation. To further improve the accuracy of the model, the
DSS database should be regularly updated and the model
recalibrated. Due to environmental changes old projects in
the database may have to be deleted as their information
becomes obsolete or outdated while new data should be added to
the database. It is recommended that ICEM be coupled with a
database management system for that purpose. Additicnally, if
the size of the data permits, the model should be calibrated
using subsets of data points according to the types of
programming environment, DBMS, expert system shells, and 4GLs.
By tailoring the model to the specific environment and
programming language being used in the project, more accurate
estimates are possible. Last but not least, the parameters
used in the ICEM knowledge base to determine cost drivers were
derived from large-scale projects. It is desirable that these
factors also be calibrated to DSS environments to further

improve the accuracy of the estimation.

68

APPENDIX A

SAMPLE SESSION

I. A TYPICAL ICEM CONSULTATION
A. OVERVIEW

This appendix is an example of a session using the Intelligent
Cost Estimation Model (ICEM). The figures which follow are similar
to actual screen outputs of the ICEM model as run on an IBM AT
personal computer. In VP-Expert, the user highlights menu items to
be selected. In this appendix, highlighted items are shown in bold
and underlined type. The total run-time of a typical session is
between five and ten minutes.

B. RUNNING ICEM

To start the ICEM model simply type GO and the welcome screen
will be displayed, Figure A.1. If any key is depressed the next
screen will be displayed, Figure A.2. The first option the user
must decide is whether to retrieve a previously saved file. All
previously saved files end with the extension .WKS, such as
DSSCOC.WKS. Since VP-Expert requires the file name to be pre-
specified within the knowledge base, only the following files may
be retrieved: ORGANIC.WKS, SEMIDET.WKS, EMBEDDED.WKS, DSSCOC.WKS,
and DSSFP.WKS. Since all spreadsheets are saved under these names
the user is advised to copy all spreadsheets files that they would
like to save to a new filename, otherwise ICEM will copy over the
spreadsheet the next time it is run. If a file is saved under a
different name then it may viewed by typing: VPP <filename>. To
exit ICEM simply type /g when it is displayed at the bottom of the
screen, depending on the user's location within the program it may
be necessary to repeat the q or /g process to exit.

Since a previously saved file was not retrieved, the next
question addressed to the user is which model they would like to
select. There are three different models available within ICEM:
the intermediate COCOMO model for all modes of operation, the
intermediate COCOMO model (organic mode) which has been calibrated
to the DSS environment, and a parametric model which incorporates
the Function Point size metric.

For this session the COCOMO model calibrated for the DSS

environment is selected. The next input the model requests is for
an estimate of the number of thousands of lines of code the program

69

will have. Additionally, the COCOMO model requires 15 cost driver
values which take into account factors effecting the estimation.
The user must select one of the five options displayed for each of
these cost drivers. Descriptions of each selection are provided to
the user.

Based on the user's inputs appropriate values are retrieved
from the rule base and saved to the appropriate cells of the
spreadsheet. The spreadsheet is then retrieved for the user.
Figure A.3, displays appropriate output values. The final
estimated value of the number of man-months required to complete
the project is described as MMadj. To perform sensitivity analysis
the user may change the number of KDSI or any of the values of the
cost drivers, all output values are instantly recalculated. Only
the cost driver values specified in Figure A4 should be used.
Figure A.5 displays a sample output using the Function point model.

Welcome to the ICEM model!

| The ICEM model is an integrated cost estimation model

. which uses an expert system to automate the Intermediate i

! constructive Cost Estimation MOdel (COCOMO), developed by ‘
Barry W. Boehm and the Function Point Model, developed by
Allen Albrecht. Both of these models have been tailored to
the unique environment of Decision Support Systems (DSS).

Press any key to continue!

Figure A.1

The ICEM model is actually three models in one. The
COCOMO Intermediate model has been automated for all modes |
of operation including organic, semidetached and embedded 1
modes. The second model specifically tailors the COCOMO :
semidetached mode for the DSS environment. The third model |
tailors the Function Point model for the DSS environment.

Press any key to begin the consultation.

Figure A.2

70

Would your like to retrieve a previously saved file?
YES NO

Which of the following models would you like to select?

COCOMO = Regular COCOMO

DSSCOC = COCOMO Tailored for DSS environment

DSSFP = Function Point model tailored for DSS environment
COCOMO DSSCOC DSSFP

This model is designed to be used as a cost
estimation tool for Decision Support System projects that
meet the requirements as specified by the Organic mode of
the Intermediate COCOMO model. The following
characteristics apply to projects which meet these
requirements:

a. Generally stable development environment.

b. Minimal need for innovation in architectures of
algorithms.

c. Relatively small size.

d. Relatively low premium on early completion of
the project.

e. Software project range usually not greater than
50 KDSTI.

f. Loose coupling with external systems.

This calibrated model estimates the development time
and cost (in man-months) of a software project based on
inputs of estimated number of thousand of delivered source

instructions (KDSI), and values for 15 cost drivers. [
Nominal values of 1.0 may be entered for unknown cost driver
information.

71

What is your best estimation on the number of thousands
of delivered source instructions your program will have?

5

You have entered 5 kdsi.

(Press enter to continue)

Cost drivers are factors to consider in developing a
model for estimating the cost of a software project. The
drivers are grouped into four categories: software product
attributes, computer attributes, personnel attributes, and

project attributes.

; Press enter to continue

The product attributes are:
RELY - required software reliability,
DATA - data base size, and

CPLX - product complexity.

Press enter to continue

72

computer attributes are:

TIME

STOR

VIRT

TURN

execution time constraint,
main storage constraint,
virtual machine volatility, and

computer turnaround time.

Press enter to continue

The

personnel attributes are:

ACAP

AEXP

PCAP

VEXP

LEXP

analyst capability,
applications experience,
programmer capability,

virtual machine experience, and

programming language experience.

Press enter to continue

The

project attributes are:

MODP - modern programming practices,

TOOL - use of software tools

SCED - required development schedule.

Press enter to continue

73

e)

Each of these cost driver attributes determines a
multiplying factor which estimates the effect of the
attribute on software development. These multipliers
are applied to a nominal COCOMO development effort estimate
to obtain a refined estimate of software development effort.

Press enter to continue

Ratings RELY: VLOW effect, slight inconvenience.
LOW easily recoverable losses.
NOM moderate, recoverable losses.
HIGH - high financial loss.

VHI AND XTRAHI - risk to human life.

Select a rating for required software reliability (RELY).
VLOW LOW NOM
HI VHI XTRAHI

Ratings DATA: VLOW and LOW - DB bytes/ prog. DSI < 10.
NOM - 10 <= D/P <= 100.
HIGH - 100 <= D/P <=1000.
XTRAHI - D/P >= 1000.

Select a rating for data base size (DATA).
VLOW LOW NOM
HI VHI XTRAHI

Ratings CPLX: VLOW straightline code.

LOW - straightforward nesting of structured
programming
NOM - mostly simple nesting.

HIGH - highly nested SP operators.
VHI - reentrant and recursive coding.
XTRAHI-microcode level control.

Select a rating for product complexity (CPLX).

VLOW LOwW NOM
HI VHI XTRAHI

74

Ratings TIME: VIOW, IOW - 50 % use of available execution time.
NOM - 50 % use of available execution time.
HIGH - 70 %.
VHI - 85 %.
%

XTRAHI - 95

Select a rating for execution time constraint (TIME).
VIOW LOW NOM
HI VHI XTRAHI

Ratings STOR: VLOW, LOW, NOM- 50 % use of available storage.

HIGH - 70
VHI - 85
XTRAHI - 95

o o0 c\

Select a rating for main storage -onstraint (STOR).

VIOW LOW NOM

HI VHI XTRAHI

Ratings VIRT: VLOW - major change every 12 months, minor:
LOW - mejor change every 12 months, minor:
NOM - major: 6 months minor: 2 weeks

HIGH - major: 2 months minor: 1 week.
VHI, XTRAHI - major: 2 weeks minor: 2 days.

Select a ratinc for virtual machine volatility (VIRT).
VIOW LOW NOM
HI VHI XTRAHI

Ratings TURN: VLOW, LOW -~ interactive.
NOM - average turnaround < 4 hour-c.
HIGH - 4-12 hours.
VHI,XTRAHI - >12 hours

Select a rating for computer turnaround time (TURN).
VLOW LOW NOM
HI VHI XTRAHI

Ratings ACAP: VLOW 15th percentile.
LOW - 35th.
NOM - 55th.
HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for analyst capability (ACAP).

VLOW LOW NOM
HI VHI XTRAHI

75

1 month.
1 month.

Ratings AEXP: VLOW - <= 4 months experience.
LOW - 1 year.
NOM =~ 3 years.
HIGH ~ 6 years.
VHI,XTRAHI - 12 years.

Select a rating for applications experience (AEXP).

Viow LOwW NOM
HI VHI XTRAHI
Ratings PCAP: VLOW - 15th percentile.

ILOW - 35th.

NOM - 55th.

HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for programmer capability (PCAP).

VLOW LOwW NOM
HI VHI XTRAHI
Ratings VEXP: VLOW - <= 1 month.
IOW = 4 months.
NOM - 1 year.

HIGH, VHI, XTRAHI - 3 Yyears.

Select a rating for virtual machine experience (VEXr).
VILOW LOwW NOM
HI VHI XTRAHI

Ratings LEXP: VLOW - 1 month experience.
LOW - 4 months.
NOM - 1 year.
HIGH, VHI, XTRAHI -~ 3 years.

Select a rating for programming language experience (LEXP).
VLOW 1OW NOM
HI VHI XTRAHI

Ratings MODP: VLOW - no use.
ILOW -~ beginning use.
NOM -~ some use.

HIGH - general use.
VHI, XTRAHI - routine use.

Select a rating for modern programming practices (MODP).

VLOW LOW NOM
HI VHI XTRAHI

76

Ratings TOOL: VLOW - basic microprocessor tools.
LOW - basic mini tools.
NOM - basic midi/maxi tools
HIGH - strong maxi programming, test tools.
VHI, XTRAHI - add requirements, design, management,
documentation tools.

Select a rating for use of software tools (TOOL).

VLOW LOW NOM
HI VHI XTRAHI
Ratings SCED: VLOW - 75 % of nominal.

IOW - 85 %.

NOM - 100 %.

HIGH - 130 %.
VHI, XTRAHI - 160

o

Select a rating for required development schedule (SCED).
VLOW LOW NOM
HI VHI XTRAHI

You have chosen the DSS COCOMO model!

(Saving Data to Spreadsheet, Please Wait...)

VALUES SAVED!

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)

77

! INTERMEDIATE COCOMO

ORGANIC MODE

EFFORT/SCHEDULE

| COST DRIVERS

|
t

1
| KDSI = 5.00 , ** CTRL F1 ** TO VIEW ,
: DEFINITIONS i
| MM = 17.34 RELY .75
{ DATA .94 *% CTRL F2 ** TO VIEW |
' TDEV = 7.39 CPLX 1.00 COST DRIVER RATINGS
: TIME 1.00
. EAF = 1.11 STOR 1.00 ** CTRL F3 ** TO SAVE
! VIRT .87 RESULTS TO: DSSCOC.WKS
— TURN 1.00 AND EXIT SPREADSHEET
: . ACAP 1.19
. MMadj = 19.24 ' AEXP 1.29 ** YOU MAY CHANGE KDSI:
: ~ PCAP 1.00 AND COST DRIVER VALUES.
! #PERS = 2.60 | VEXP 1.21 AS NEEDED
: ~ LEXP 1.07
' PROD = 259.92 ; MODP .91 hkkkhkkkkkkkdhkkkkkkkkxk
| ‘ TOOL 1.00 * For DSS projects *
! SCED 1.00 % % % J Kk %k %k Kk k Kk Kk k kKK kkkkk
Figure A.3
COST DRIVERS
VLOW LOW NOM HIGH VHI XtraHI
RELY .75 .88 1.00 1.15 1.40 1.40
DATA .94 .94 1.00 1.08 1.16 1.16
CPLX .70 .85 1.00 1.15 1.30 1.65
TIME 1.00 1.00 1.00 1.11 1.30 1.66 ** (CTRL F5) TO
STOR 1.00 1.00 1.00 1.06 1.21 1.56 RETURN TO MAIN
VIRT .87 .87 1.00 1.15 1.30 1.30 SPREADSHEET
TURN .87 .87 1.00 1.07 1.15 1.15
ACAP 1.46 1.19 1.00 .86 .71 .71
AEXP 1.29 1.13 1.00 1.00 .91 .82
PCAP 1.42 1.17 1.00 .86 .70 .70
VEXP 1.21 1.10 1.00 .90 .90 .90
LEXP 1.14 1.07 1.00 .95 .95 .95
MODP 1.24 1.10 1.00 .91 .82 .82
TOOL 1.24 1.10 1.00 .91 .83 .83
SCED 1.23 1.08 1.00 1.04 1.10 1.10
Figure A.4
78

[

FUNCTION POINT MODEL EFFORT/SCHEDULE
H |
%FUNCTION Value CPLX COUNT RATINGS *% CTRL F1 ** TO
1 ! VIEW COMPLEXITY
Inputs = 25 3 75 | Q1. 1.00 RATINGS
‘ Outputs = 7 5 352 | Q2. 3.00
'~ Inquiries = 5 3 15 | Q3. 2.00 ** CTRL F3 ** TO
} Files = 6 7 42 | Q4. 4.00 SAVE RESULTS TO:
Interfaces = 3 5 15 | Q5. 2.00 DSSFP.WKS AND EXIT
@ Total = 182 | Q6. 3.00 SPREADSHEET
l — - Q7. 2.00
| Q8. 1.00 *% YOU MAY CHANGE
RATINGS = 38.00 " Q9. 4.00 FUNCTION VALUES
Q10. 2.00 AND COMPLEXITY
FP = 187.46 Ql1. 3.00 RATINGS AS NEEDED
Q12. 4.00
MM = 2.50 Q13. 2.00
Ql4. 5.00

Figure A.5

79

APPENDIX B

SOURCE CODE

The source code for the two knowledge bases (ICEM1.KBS) and
(ICEM2.KBS) is displayed in sections A and B respectively.

A. (ICEM1.KBS) FILE
RUNTIME;
EXECUTE;
BKCOLOR=3;
ACTIONS
WOPEN 1,3,5,13,70,1
ACTIVE 1
color = 15
DISPLAY "
Welcome to the ICEM model!

The ICEM model is an integrated cost estimation model
which uses an expert system to automate the Intermediate
COnstructive Cost Estimation MOdel (COCOMO), developed by
Barry W. Boehm and the Function Point Model, developed by
Allen Albrecht. Both of these models have been tailored to
the unique environment of Decision Support Systems (DSS).

Press any key to continue!-~"
WCLOSE 1
WOPEN 1,3,5,12.70,1
ACTIVE 1
color = 15
DISPLAY "

The ICEM model is actually three models in one. The
COCOMO Intermediate model has been automated for all modes
of operation including organic, semidetached and embedded
modes. The second model specifically tailors the COCOMO
semidetached mode for the DSS environment. The third model
tailors the Function Point model for the DSS environment.

Press any key to begin the consultation.~"
WCLOSE 1
color = O
CLS
FIND continue
review = YIS
WHILETRUE model = COCOMO and review = YES THEN
CLS
WOPEN 1,3,5,12,70,1

80

ACTIVE 1
color = 15
DISPLAY "

The Intermediate COCOMO model uses 15 cost drivers
applied to various attributes of a software project,

the estimated number of thousand of delivered source
instructions (KDSI), and the development mode to estimate

the development time and cost of a software development

project.

~n

CLS

DISPLAY "

The development mode of the project is determined by
its size and complexity. The development mode may be
considered either ORGANIC, SEMIDETACHED, or EMBEDDED.

A listing of criteria for each mode follows. Determine
the mode that best identifies your software project.

~Nn

CLs

DISPLAY "
1. ORGANIC

a. Generally stable development environment.
~b. Minimal need for innovation in architectures of

algorithms.

c. Relatively small size.

d. Relatively low premium on early completion of
the project.

e. Software project range usually not greater than
50 KDSI.

f. Loose coupling with external systems.~"

CLs

DISPLAY "

2. SEMIDETACHED

a. Mixture of organic and embedded characteristics.

b. Intermediate level of experience with related
systems.

c. Wide mix of experienced and inexperienced people.

d. Some experience with aspects of system under
development.

e. Software project range usually not greater than
300 KDSI.

~n

CLS

DISPLAY "

81

3. EMBEDDED

a. Much innovation required.
b. Integral part of some larger system with
inflexibility.
c. Interface requirements.
d. High required reliability.
e. Development within tight time and cost constraints.
-~ "
WCIOSE 1
color = O
CLS
RESET review
FIND review
END
review = YES
WHILETRUE model = DSSCOC and review = YES THEN
CLS
WOPEN 1,1,5,20,70,1
ACTIVE 1
color = 15
DISPLAY "

This model is designed to be used as a cost
estimation tool for Decision Support System projects that
meet the requirements as specified by the Organic mode of
the Intermediate COCOMO model. The following
characteristics apply to projects which meet these
regquirements:

a Generally stable development environment.

b. Minimal need for innovation in architectures of
algorithms.

c. Relatively small size.

d. Relatively low premium on early completion of
the project.

e. Software project range usually not greater than
50 KDSI.

f. Loose coupling with external systems.

1]

WCLOSE 1

WOPEN 1,3,5,12,70,1

ACTIVE 1

color = 15

CLS

DISPLAY "

This calibrated model estimates the development time
and cost (in man-months) of a software project based on
inputs of estimated number of thousand of delivered scource
instructions (KDSI), and values for 15 cost drivers.

82

Nominal values of 1.0 may be entered for unknown cost driver
information.

-~

review = NO

WCLOSE 1

color = O
END
review = YES
WHILETRUE model = DSSFP and review = YES THEN

WOPEN 1,3,5,12,70,1

ACTIVE 1

color = 15

CLS

DISPIAY "

The Fuaction Point model makes effort estimates based
on Allen Albrecht's function point sizing metric.
metric based on five project factors which are measured by
the user. These include:

1. Inputs
Outputs
Inquiries
Files
Interfaces

~ W

WCLOSE 1

WOPEN 1,3,5,17,70,1

ACTIVE 1

color = 15

CLS

DISPLAY "

Due to difficulties in ex-post data gathering it
was not possible to properly calibrate the model for
the DSS environment. However, the framework for the
model has been completed and the model has automated
the process of determining the function point sizing
metric. 1In order for the model to be able to make
effort estimates on projects it must be calibrated to
the users's environment. The method for calculating
calibration coefficients is explained in Chapter Vv,
section D of the thesis. Once the coefficients have
been calculated they should be added to the (MM) effort
equation located in cell B18 of the DSSFP.WKS
spreadsheet.

U W
R S

Press any key to begin~"
review = NO
WCLOSE 1
color = 0O
CLS
END
FIND finish:

83

Vhkkkkhkkkkkkkkkkkkhkkkkkk* START RULES BLOCK *kdkkkhhkhkhhhkhkhkrhhhkkhk*

RULE 1
IF
THEN

RULE 2
IF
THEN

RULE 3
IF

THEN

retreive = YES and file <> UNKOWN

Display "

ABOUT TO VIEW SAVED SPREADSHEET FILE"
COIOR = 30
DISPILAY"

(PRESS ENTER TO CONTINUE!)~"

COIOR = O
SAVEFACTS fixvalue
continue = NC;

retreive = NO and Model <> UNKOWN
continue = YES;

continue=YES and model=COCOMO and mode=0RGANIC and
kdsi=0K and LASTDRIVE=DONE
DISPLAY "
You have chosen the (MODEL} {MODE} mode"
COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)
11
PWKS kdsi value, C4, c:\vpexp\organic
PWKS rrating, G6, c:\vpexp\organic
PWKS drating, G7, c:\vpexp\organic
PWKS crating, G8, c:\vpexp\organic
PWKS trating, G9, c:\vpexp\organic
PWKS srating, G10, c:\vpexp\organic
PWKS vrating, G1l1, c:\vpexp\organic
PWKS turrating, G12, c:\vpexp\organic
PWKS acrating, G113, c:\vpexp\organic
PWKS aerating, G114, c:\vpexp\organic
PWKS prating, G15, c:\vpexp\organic
PWKS verating, G16, c:\vpexp\organic
PWKS lrating, G17, c:\vpexp\organic
PWKS mrating, G18, c:\vpexp\organic
PWKS torating, G19, c:\vpexp\organic
PWKS scrating, G20, c:\vpexp\organic

RESET ALL
retreive = NO
mode = ORGANIC
SAVEFACTS fixvalue
finish = DONE;

84

RULE 4
IF

THEN

RULE 5
IF

THEN

continue=YES and model=COCOMO and mode=SEMIDETACHED and
kdsi=0OK and LASTDRIVE = DONE
DISPLAY "
You have chosen the (MODEL} {MODE} mode"
COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)
n
PWKS kdsi value, C4, c:\vpexp\semidet
PWKS rrating, G6, c:\vpexp\semidet
PWKS drating, G7, c:\vpexp\semidet
PWKS crating, G8, c:\vpexp\semidet
PWKS trating, G9, c:\vpexp\semidet
PWKS srating, G10, c:\vpexp\semidet
PWKS vrating, Gl1, c:\vpexp\semidet
PWKS turrating, G12, c:\vpexp\semidet
PWKS acrating, G13, c:\vpexp\semidet
PWKS aerating, G114, c:\vpexp\semidet
PWKS prating, G15, c:\vpexp\semidet
PWKS verating, G116, c:\vpexp\semidet
PWKS lrating, G117, c:\vpexp\semidet
PWKS mrating, G18, c:\vpexp\semidet
PWKS torating, G19, c:\vpexp\semidet
PWKS scrating, G20, c:\vpexp\semidet

RESET ALL

retreive = NO

mode = SEMIDETACHED
SAVEFACTS fixvalue
finish = DONE;

continue=Yes and model=COCOMO and mode=EMBEDDED and
kdsi=0OK and LASTDRIVE = DONE

DISPLAY "
You have chosen the {MODEL} {(MODE} mode"

COLOR = 30

DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)

PWKS kdsi value, C4, c:\vpexp\organic
PWKS rrating, G6, c:\vpexp\organic
PWKS drating, G7, c:\vpexp\organic
PWKS crating, G8, c:\vpexp\organic
PWKS trating, G9, c:\vpexp\organic
PWKS srating, G10, c:\vpexp\organic

85

RULE 6
IF

THEN

PWKS vrating, G111, c:\vpexp\organic
PWKS turrating, G112, c:\vpexp\organic
PWKS acrating, G13, c:\vpexp\organic
PWKS aerating, Gl14, c:\vpexp\organic
PWKS prating, G15, c:\vpexp\organic
PWKS verating, G116, c:\vpexp\organic
PWKS 1lrating, G117, c:\vpexp\organic
PWKS mrating, G18, c:\vpexp\organic
PWKS torating, G19, c:\vpexp\organic
PWKS scrating, G20, c:\vpexp\organic

RESET ALL
retreive = NO
mode = EMBEDDED
SAVEFACTS fixvalue
finish = DONE;

continue = YES and model = DSSCOC and kdsi=0K and
LASTDRIVE = DONE
DISPLAY "
You have chosen the DSS COCOMO model"
COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)
"
PWKS kdsi value, C4, c:\vpexp\dsscoc -
PWKS rrating, G6, c:\vpexp\dsscoc
PWKS drating, G7, c:\vpexp\dsscoc
PWKS crating, G8, c:\vpexp\dsscoc
PWKS trating, G9, c:\vpexp\dsscoc
PWKS srating, G10, c:\vpexp\dsscoc
PWKS vrating, G11, c:\vpexp\dsscoc
PWKS turrating, G12, c:\vpexp\dsscoc
PWKS acrating, G113, c:\vpexp\dsscoc
PWKS aerating, G14, c:\vpexp\dsscoc
PWKS prating, G15, c:\vpexp\dsscoc
PWKS verating, G116, c:\vpexp\dsscoc
PWKS 1lrating, G17, c:\vpexp\dsscoc
PWKS mrating, G18, c:\vpexp\dsscoc
PWKS torating, G19, c:\vpexp\dsscoc
PWKS scrating, G20, c:\vpexp\dsscoc

RESET ALL

retreive = NO
model = dsscoc
SAVEFACTS fixvalue
finish = DONE;

86

RULE 7

IF continue = YES and model = DSSFP
THEN FIND inputs

CLS

DISPLAY "

Classifying inputs for complexity depends on two things:
the number of files referenced or accessed, and the number of
data items (fields or specific variables) referenced. Use the
following chart for classifying inputs:

Press any key to view chart!
~

CLS
DISPLAY "
1-4 data items 5-15 16 or more
referenced data items
0 or 1 file(s) Simple (3) Simple (3) Average (4)
referenced
2 files Simple (3) Average (4) Complex (6)
referenced
3 or more Average (4) Complex (6) Complex (6)

files ref.

FIND input cplx
CLS

FIND outputs

CLS

FIND output cplx
CLS

FIND inquiries
CLS

DISPLAY "

Classifying inquiries consists of two parts:
classifying the inputs and classifying the outputs. The
same charts are used for inputs and outputs as before. The
only difference is that while a stand alone input actually
updates the data store, an inquiry only directs the search
and never updates. Use the following chart to classify the
input inquiries:

Press any key to view chart!
~ "t

CLS
DISPLAY "

87

- AP L S G - P W e e G S - — D G i - ——— -

1-4 data items

16 or more
data items

referenced
0 or 1 file(s) Simple (3)
referenced
2 files Simple (3)
referenced

3 or more
files ref.

Average (4)

Average (4)

Complex (6)

Average (4)

Complex (6)

Complex (6)

FIND
CLS
FIND
CLS
FIND
CLS
FIND
CLS
DISPLAY "

in inquir_cplx
out inquir cplx
inquir_ cplx

files

Classifying files is also a two step process which
involves cross referencing the number of data items actually
required by the application with the number of record formats
within the file or the number of logical relationships in

which the file participates are counted.
chart to determine the file complexity factor:

Press any key to view chart!

-t

Use the following

51 or more
data items

- - —— —————— - i — . > - S S G " W W . G —— S G - T G W G G s - S W —

CLS
DISPLAY "
1-19 data
items ref.
1 logical record Simple (7)
format/relationship
2-5 logical Simple (7)
record format/
relationships
6 or more Ave. (10)

logical record
format/relationships

Average (10)

Complex (15)

Average (10)

Complex (15)

Complex (15)

- W . —— —— - S e W D e S S e G G G S D D S e e S W S G S ST e —— -

FIND file cplx

88

CLS

FIND interfaces
CLS

DISPLAY "

The classification scheme for interfaces is similar to the
one used for files. Use the following chart to determine the

interface complexity factor:

Press any key to view chart!

-~ 1t

CLS
DISPLAY "
1-19 data 20-50
items ref.
1 logical record Simple (7) Simple (7)
format/relationship
2-5 logical Simple (7) Average (10)
record format/
relationships
6 or more Ave. (10) Complex (15)

logical record
format/relationships

FIND inter cplx
FIND Q1
FIND Q2
FIND Q3
FIND Q4
FIND Q5
FIND Q6
FIND Q7
FIND Q8
FIND Q9
FIND Q10

FIND Q11

89

51 or more
data items

Average (10)

Complex (15)

Complex (15)

CLS
FIND Q12
CLS
FIND Q13
CLS
FIND Q14
CLS

DISPLAY "

You have chosen the DSS Function Point model"
COLOR = 30
DISPILAY™"™

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)
n"n
PWKS inputs, B6, c:\vpexp\dssfp
PWKS outputs, B7, c:\vpexp\dssfp
PWKS inquiries, B8, c:\vpexp\dssfp
PWKS files, B9, c:\vpexp\dssfp
PWKS interfaces, B10, c:\vpexp\dssfp
PWKS input cplx, D6, c:\vpexp\dssfp
PWKS output cplx, D7, c:\vpexp\dssfp
PWKS inquir cplx, D8, c:\vpexp\dssfp
PWKS file cplx, D9, c:\vpexp\dssfp
PWKS inter cplx, D10, c:\vpexp\dssfp

PWKS Q1, H6, c:\vpexp\dssfp
PWKS Q2, H7, c:\vpexp\dssfp
PWKS Q3, H8, c:\vpexp\dssfp
PWKS Q4, H9, c:\vpexp\dssfp
PWKS Q5, H10, c:\vpexp\dssfp
PWKS Q6, H1l1l, c:\vpexp\dssfp
PWKS Q7, H12, c:\vpexp\dssfp
PWKS Q8, H13, c:\vpexp\dssfp
PWKS Q9, H1l4, c:\vpexp\dssfp
PWKS Q10, H15, c:\vpexpb\dssfp
PWKS Q11, H1l6, c:\vpexp\dssfp
PWKS Q12, H17, c:\vpexp\dssfp
PWKS Q13, H18, c:\vpexp\dssfp
PWKS Q14, H19, c:\vpexp\dssfp

RESET ALL
retreive = NO
model = DSSFP
SAVEFACTS fixvalue
finish = DONE;

90

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IFr
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

10

11

12

13

14

out inguir_cplx = 7

inquir cplx = 7;

out inquir cplx = 5 and in_inquir cplx = 6
inquir _cplx = 6;

out inquir cplx = 5 and in_inquir cplx < 6
ingquir_cplx = 5;

out inquir_cplx = 4 and in_ingquir cplx = 6
inquir cplx = 6;

out ingquir cplx = 4 and in_inquir cplx < 6

inquir cplx = 4;

kdsi value<=?
WHILETRUE Kkdsi value<=0 THEN
CLS
COLOR = 30
DISPLAY"
You must enter a value greater than 0
You have entered {kdsi value} kdsi.
"
COLOR = 0
RESET kdsi value
FIND kdsi_value

END
DISPLAY"

You have entered {kdsi value} kdsi."
COLOR = 30
DISPLAY"

(Press Enter to continue)

-~
COLOR = 0
kdsi = OK;

kdsi value > 0
DISPLAY"
You have entered {kdsi value} kdsi."
COLOR = 30
DISPLAY"

91

(Press enter to continue)

1]

COILOR = O
kdsi = OK;
RULE 15
IF kdsi = ok
THEN CLS
WOPEN 2,3,5,16,70,1
ACTIVE 2
COLOR = 15
DISPLAY"

Cost drivers are factors to consider in developing a
model for estimating the cost of a software project. The
drivers are grouped into four categories: software product
attributes, computer attributes, personnel attributes, and
project attributes.

Press enter to continue-~"
CLs
DISPLAY"Y
The product attributes are:
RELY - required software reliability,

DATA - data base size, and

CPLX - product complexity.

Press enter to continue~"

CLS
DISPLAY"Y

The computer attributes are:
TIME - execution time constraint,

STOR - main storage constraint,

VIRT virtual machine volatility, and

TURN

computer turnaround time.

92

Press enter to continue-~"

CLSs
DISPLAY"

The personnel attributes are:
ACAP - analyst capability,
AEXP - applications experience,
PCAP - programmer capability,
VEXP - virtual machine experience, and
LtXP - programming language experience.
Press enter to continue~"

CLS
DISPLAY"

The project attributes are:
MODP - modern programming practices,
TOOL - use of software tools

SCED - required development schedule.

Press enter to continue-~"

CLs
DISPLAY "

Each of these cost driver attributes determines a
multiplying factor which estimates the effect of the
attribute on software development. These multipliers
are applied to a nomial COCOMO development effcrt estimate
to obtain a refined estimate of software development effort.

Press enter to continue-~"

WCLOSE 2
COLOR = O
CLS
SI.OW = DONE;
RULE 16
IF SHOW = DONE and RELY = VLOW and driver2 = done

93

THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF

17

18

19

20

21

22

23

24

25

26

RRATING = .75
lastdrive = DONE;

SHOW = DONE and RELY =
RRATING = .88
LASTDRIVE = DONE;

SHOW = DONE and RELY =
RRATING = 1.00
LASTDRIVE = DONE;

SHOW = DONE and RELY =
RRATING = 1.40
ILASTDRIVE = DONE;

SHOwW = DONE ana RELY =
RRATING = 1.40
LASTDRIVE = DONE;

SHOW = DONE and DATA =
DRATING .94
DRIVER2 DONE;

o

DATA = LOW AND DRIVER3
DRATING = .94
DRIVERZ2 = DONE;

DATA = NOM AND DRIVLR3
DRATING = 1.00
DRIVER2 DONE;

i

DATA = HI AND DRIVER3
DRATING 1.08
DRIVER2 DONE;

DATA = VHI AND DRIVER3
DRATING 1.16
DRIVER2 DONE;

LOW and driver2 = done
NOM and driver2 = done
VHI and driver2 = done

XTRAHI and driver2 = done

VLOW AND DRIVER3 = DONE

= DONE

= DONE

= DONE

= DONE

DATA = XTRAHI AND DRIVER3 = DONE

94

THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
iF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF

27

28

29

30

31

32

34

35

36

DRATING
DRIVERZ2

l.16
DONE ;

ot

CPLX = VLOW AND DRIVER4 = DONE

CRATING = .70

DRIVER3 = DONE;

CPLX = LOW AND DRIVER4 = DONE
CRATING = .85

DRIVER3 = DONE;

CPLX = NOM AND DRIVER4 = DONE

CRATING = 1.00
DRIVER3 = DONE;

CPLX = HI AND DRIVER4 = DONE
CRATING 1.15
DRIVER3 DONE;

i

CPLX = VHI AND DRIVER4 = DONE
CRATING 1.30
DRIVER3 DONE;

o

CPLX = XTRAHI AND DRIVER4 = DONE
CRATING = 1.65
DRIVER2 = DONE;

TIME = VLOW AND DRIVERS = DONE
TRATING = 1.00
DRIVER4 = DONE;

TIME = LOW AND DRIVERS = DONE
TRATING = 1.00
DRIVER4 = DONE;
TIME = NOM AND DRIVERS = DONE

TRATING = 1.00
DRIVER4 DONE;

TIME = HI AND DRIVERS5 = DONE

95

THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULFE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF

37

38

39

40

41

42

43

44

45

46

TRATING
DRIVER4

1.11
DONE;

o

TIME = VHI AND DRIVERS5 = DONE
TRATING = 1.30
DRIVER4 = DONE;

TIME = XTRAHI AND DRIVER5 = DONE
TRATING 1.66
DRIVER4 DONE;

STOR = VLOW AND DRIVER6 = DONE

SRATING = 1.00
DRIVER5 = DONE;
STOR = LOW AND DRIVER6 = DONE
SRATING = 1.00
DRIVERS = DONE:;
STOR = NOM AND DRIVER6& = DONE
SRATING = 1.00
DRIVERS = DONE;

STOR = HI AND DRIVER6 = DONE
SRATING 1.06
DRIVERS DONE ;

non

STOR = VHI AND DRIVER6 = DONE
SRATING 1.21
DRIVERS5 DONE;

|

STOR = XTRAHI AND DRIVER6= DONE
SRATING = 1.56
DRIVERS = DONE;

VIRT = VLOW AND DRIVER7 = DONE
VRATING .87
DRIVER6 = DONE;

VIRT = LOW AND DRIVER7 = DONE

96

THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF

47

48

49

50

51

52

53

54

55

56

VRATING
DRIVERG6

.87
DONE ¢

VIRT = NOM AND DRIVER7 = DONE
VRATING 1.090
DRIVERS6 DONE;

[/

VIkY = HI AND DRIVER7 = DONE
VRATING 1.15
DRIVERS6 DONE ;

o

VIRT = VHI AND DRIVER7 = DONE
VRATING 1.30
DRIVERS6 DONE;

o

VIRT = XTRAHI AND DRIVER7 = DONE
VRATING = 1.30
DRIVER6 = DONE;

TURN = VLOW AND DRIVERS8 = DONE
TURRATING = .87
DRIVER7 = DONE;

TURN = LOW AND DRIVER8 = DONE
TURRATING = .87
DRIVER7 = DONE;
TURN = NOM AND DRIVERS = DONE

TURRATING = 1.00
DRIVER7 = DONE;

TURN = HI AND DRIVER8 = DONE
TURRATING = 1.07
DRIVER7 = DONE;

TURN = VHI AND DRIVERS8 = DONE
TURRATING = 1.15
DRIVER7 = DONE;

TURN = XTRAHI AND DRIVER8 = DONE

97

THEN TURRATING = 1.15
DRIVER7 = DONE;
RULE 57
IF ACAP = VLOW AND DRIVER9 = DONE
THEN ACRATING = 1.46
DRIVER8 = DONE:;
RULE 58
IF ACAP = LOW AND DRIVERS = DONE
THEN ACRATING = 1.19
DRIVER8 = DONE:;
RULE 59
IF ACAP = NOM AND DRIVER9 = DONE
THEN ACRATING = 1.00
DRIVER8 = DONE;
RULE 60
IF ACAP = HI AND DRIVER9 = DONE
THEN ACRATING = .86
DRIVER8 = DONE;
RULE 61
IF ACAP = VHI AND DRIVERS = DONE
THEN ACRATING = .71
DRIVER8 = DONE;
RULE 62
IF ACAP = XTRAHI AND DRIVERS = DONE
THEN ACRATING = .71
NPDTVER8 = DNONF;
RULE 63
IF AEXP = VLOW AND DRIVER10 = DONE
THEN AERATING = 1.29
DRIVERS = DONE;
RULE 64
IF AEXP = LOW AND DRIVER10 = DONE
THEN AERATING = 1.13
DRIVERY9 = DONE;
RULE 65
IF AEXP = NOM AND DRIVER10 = DONE
THEN AERATING = 1.00
DRIVERS = DONE;
RULE 66
IF AEXP = HI AND DRIVER10 = DONE

o8

THEN AERATING = .91
DRIVERS = DONE;
RULE 67
IF AEXP = VHI AND DRIVER10 = DONE
THEN AERATING = .82
DRIVERS = DONE;
RULE 68
IF AEXP = XTRAHI AND DRIVER10 = DONE
THEN AERATING = .82
DRIVERS = DONE;
RULE 69
IF PCAP = VLOW AND DRIVER11 = DONE
THEN PRATING = 1.42
DRIVER10 = DONE;
RULE 70
IF PCAP = LOW AND DRIVER11l = DONE
THEN PRATING = 1.17
DRIVER10 = DONE:;
RULE 71
IF PCAP = NOM AND DRIVER11l = DONE
THEN PRATING = 1.00
DRIVER10 = DONE;
RULE 7:¢
IF PCAP = H1 AND DRIVER11l = DONE
THEN PRATING = .86
DRIVFR1., - DONE;
RULE 73
IF PCAP = VHI AND DRIVER11l = DONE
THEN PRATING = .70
DRIVER10 = DONE;
RULE 74
IF PCAP = XTRAHI AND DRIVER11l = DONE
THEN PRATING = .70
DRIVER10 = DONE;
RULE 75
IF VEXP = VLOW AND DRIVER12 = DONE
THEN VERATING = 1.21
DRIVER11 = DONE;
RULE 76
IF VEXP = LOW AND DRIVER12 = DONE

99

THEN

RJLE
IF
THEN

RULE
I "

THEN

RULE
IF
THEN

RULE
1F
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF

77

78

79

80

81

82

83

84

85

86

VERATING
DRIVER11

i.10
DONE;

I}

VEXP = NOM AND DRIVER12 = DONE
VERATING = 1.00
DRIVER11] = DONE;

VEXP = HI AND DRIVER12 = DONE
VERATING = .90
DRIVER11 = DONE;

VEXP = VHI AND DRIVER12 = DONE
VERATING = .90
DRIVER11 DONE;

VEXP = XTRAHI AND DRIVER1Z = DOKNE
VERATING = .90
DRIVER11l = DONE;

LEXP = VLOW AND DRIVER13 = DOKE
LRATING = 1.14
DRIVER12 = DONE;

LEXP = LOW AND DRIVER13 = DONE
LRATING = 1.07

DRIVER12 = DONE;

LEXP = NOM AND DRIVER13 = DONE

LRATING = 1.00
DRIVER12 = DONE;

LEXP = HI AND DRIVER13 = DONE
LRATING = .95
DRIVER12 = DONE;

LEXP = VHI AND DRIVER13 = DONE
LRATING = .95
DRIVER12 = DONE;

LEXP = XTRAHI AND DRIVER13 = DONE

100

THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF

87

88

89

90

91

Yl

93

94

95

96

LRATING = .95
DRIVER12 = DONE;

MODP = VLOW AND DRIVER14 = DONE
MRATING = 1.24
DRIVER13 = DONE;

MODP = LOW AND DRIVER14 = DONE
MRATING = 1.10

DRIVER13 = DONE;

MODP = NOM AND DRIVER14 = DONE

MRATING = 1.00
DRIVER13 = DONE;

MODP = HI AND DRIVER14 = DONE
MRATING = .91
DRIVER13 = DONE;

MODP = VHI AND DRIVER14 = DONE
MRATING = .82
DRIVER13 = DONE;

MODP = XTRAHI AND DRIVER14 = DONE
MRATING = .82
DRIVER13 = DONE:;

TOOL = VLOW AND DRIVER15 = DONE
TORATING = 1.24
DRIVER14 = DONE;

TOOL = LOW AND DRIVER1S5 = DONE
TORATING = 1.10
DRIVER14 = DONE;
TOOL = NOM AND DRIVER1S = DONE

TORATING = 1.00
DRIVER14 = DONE;

TOOL = HI AND DRIVER1S = DONE

101

THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
iF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

RULE
IF
THEN

[hhkhkhhkkhkhhkhhhkkkkkkkkk**x START QUESTIONS BLOCK *kkkkkkkkkkrkkk

ASK retreive:

97

98

99

100

101

102

103

104

105

file?";

TORATING = .91
DRIVER14 = DONE;
TOOL = VHI AND DRIVER15 = DONE
TORATING = .83
DRIVER14 = DONE;
TOOL = XTRAHI AND DRIVER15 = DONE
TORATING = .83
DRIVER14 = DONE;
SCED = VLOW
SCRATING = 1.23
DRIVER15 = DONE;
SCED = LOW
SCRATING = 1.08
DRIVER15 = DONE;
SCED = NOM
SCRATING = 1.00
DRIVER15 = DONE;
SCED = HI
SCRATING = 1.04
DRIVER1S5 = DONE;
SCED = VHI
SCRATING = 1.10
DRIVER15 = DONE;
SCED = XTRAHI
SCRATING = 1.10
DRIVER15 = DONE;
retreive = YES
finish = done;

"Would your like to retreive a previously saved

102

CHOICES retreive: YES, NO:

ASK file: "Select the file to be retrieved:

ORGANIC = COCOMO Organic Mode File
SEMIDETACHED = COCOMO Semidetached Mode File
EMBEDDED = COCOMO Embedded Mode File

DSSCOC = DSS COCOMO Semidetached Mode File
DSSFP = DSS Function Point File

" .
'

CHOICES file: ORGANIC, SEMIDETACHED, EMBEDDED, DSSCOC, DSSFP;

ASK model: "Which of the following models would you like to select?

COCOMO = Regular COCOMO
DSSCOC = COCOMO Tailored for DSS environment
DSSFP = Function Point model tailored for DSS

environment
" .

CHOICES model: COCOMO, DSSCOC, DSSFP;

ASK review: "Would you like to review the mode characteristics
again?";
CHOICES review: YES, NO;

ASK mode: "Which of the following modes best identifies your
scftware project?";
CHOICES mode: ORGANIC, SEMIDETACHED, EMBEDDED;

ASK kdsi value: "What is your best estimation on the number of

thousands of delivered source instructions your program will have?
" e

ASK RELY: "

Ratings RELY: VLOW - effect, slight inconvenience.
LOW - easily recoverable losses.
NOM - moderate, recoverable losses.

HIGH - high financial loss.
VHI AND XTRAHI - risk to human life.

Select a rating for required software reliability (RELY).";
CHOICES RELY: VLOW, LOW, NOM, HI, VHI, XTRAHI:;

ASK DATA: "

Ratings DATA: VLOW and LOW - DB bytes/ prog. DSI < 10.
NOM - 10 <= D/P <= 100.
HIGH - 100 <= D/P <=1000.

XTRAHI - D/P >= 1000.

Select a rating for data base size (DATA).":
CHOICES DATA: VINOW, LOW, NOM, HI, VHI, XTRAHI:

103

ASK CPLX: "
Ratings CPLX: VLOW - straightline code.

LOW - straightforward nesting of structured
programming (SP).

NOM - mostly simple nesting. -

HIGH - highly nested SP operators.
VHI - reentrant and recursive coding.
XTRAHI-microcode level control. .

Select a rating for product complexity (CPLX).":
CHOICES CPLX: VLOW, LOW, NOM, HI, VHI, XTRAHI:

ASK TIME: "
Ratings TIME: VLOW, LOW, NOM - 50 % use of available execution
time.
HIGH - 70
VHI - 85
XTRAHI - 95

o® o\° o\

Select a rating for execution time constraint (TIME).";
CHOICES TIME: VLOW, LOW, NOM, HI, VHI, XTRAHI:

ASK STOR: "

Ratings STOR: VLOW, LOW, NOM- 50 % use of available storage.
HIGH - 70 %.
VHI - 85 %.

XTRAHI - 95

Select a rating for main storage constraint (STOR).":
CHOICES STOR: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK VIRT: "

Ratings VIRT: VLOW, LOW - major change: 12 months, minor: 1 month.
NOM - major change: 6 months, minor: 2 weeks
HIGH - major: 2 months, minor: 1 week.
VHI, XTRAHI - major: 2 weeks, minor: 2 days.

Select a rating for virtual machine volatility (VIRT).";
CHOICES VIRT: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK TURN: "
Ratings TURN: VLOW, LOW - interactive.
NOM - average turnaround < 4 hours.
HIGH - 4-12 hours.
VHI,XTRAHI ~ >12 hours
Select a rating for computer turnaround time (TURN)."; ’

CHOICES TURN: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK ACAP: " .
Ratings ACAP: VLOW - 15th percentile.

104

]

LOW - 35th.
NOM - 55th.
HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for analyst capability (ACAP).";
CHOICES ACAP: VLOW, LOW, NOM, HI, VHI, XTRAHI:;

ASK AEXP: "

Ratings AEXP: V.LOW - <= 4 months experience.
LOW - 1 year.
NOM - 3 years.

HIGH - 6 years.
VHI,XTRAHI - 12 years.

Select a rating for applications experience (AEXP).";
CHOICES AEXP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK PCAP: "

Ratings PCAP: VLOW - 15th percentile.
LOW - 35th.
NOM - 55th.

HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for programmer capability (PCAP).";
CHOICES PCAP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK VEXp: "

Ratings VEXP: VILOW - <= 1 month.
ILOW - 4 months.
NOM - 1 year.

HIGH, VHI, XTRAHI - 3 years.

Select a rating for virtual machine experience (VEXP).";
CHOICES VEXP: VILOW, LOW, NOM, HI, VHI, XTRAHI:;

ASK LEXP: "

Ratings LEXP: VLOW - 1 month experience.
LOW - 4 months.
NOM - 1 year.

HIGH, VHI, XTRAHI - 3 years.

Select a rating for programming language experience (LEXP).";
CHOICES LEXP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK MODP:

Ratings MODP: VLOW - no use.
LOW - beginning use.
NOM - some use.

105

HIGH - general use.
VHI, XTRAHI -~ routine use.

Select a rating for modern programming practices (MODP).";
CHOICES MCDP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK TOOL: "

Ratings TOOL: VLOW - basic microprocessor tools.
LOW - »asic mini tools.
NOM - basic midi/maxi tools

HIGH - strong maxi programming, test tools.
VHI, XTRAHI - add requirements, design, management,
documentation tools.

Select a rating for use of software tools (TOOL).";
CHOICES TOOL: VLOW, LOW, NOM, HI, VHI, XTRAHI:

ASK SCED: "

Ratings SCED: VLOW - 75
Low - 85
NOM - 100 %
HIGH - 130 %
VHI, XTRAHI

of nominal.

o0 o\

.

1 -
o\
.

160

Select a rating for required development schedule (SCED).";
CHOICES SCED: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK inputs: "

In measuring inputs each unique user data or control
input that is performed by the user within the application
in order to add, delete or update something should be counted.

What is the number of inputs your program will have?
”"e.

ASK input cplx: "

Select the input complexity factor:

LY
’

CHOICES input cplx: 3,4, 6;

ASK outputs: "

In measuring outputs, each unique user data or control
output procedurally generated that leaves the application
boundary should be counted. This includes reports, messages
to the user, and outputs to other applications.

What is the number of outputs your program will have?
"o

ASK output cplx: "

106

Outputs are classified in a similar format as inputs.
Use the following chart for classifying outputs:

1-5 data items 6-19 20 or more
referenced data items
0 or 1 file(s) Simple (4) Simple (4) Average (5)
referenced
2-3 files Simple (4) Average (5) Complex (7)
4 or more Average (5) Complex (7) Cruplex (7)

files ref.

Select the output complexity factor:

LLINY
’

CHOICES output cplx: 4, 5, 7;

ASK inquiries: "

In measuring ingquiries each unique input/output
combination in which an on-line user-defined input causes
and generates an immediate on-line output by the application
should be counted. Many inquiries are simply requests for
specific data from a database.

What is the number of inquiries your program will have?
" .
ASK in_ingquir cplx: "
Select the input inquiries complexity factor:
"o
CHOICES in_inquir cplx: 3, 4, 6;
ASK out inquir cplx: "
Use the following chart to classify the output
inquiries:

e ——————— . ———— - —— - ——— i ——————— o —————— -

Output Part: 1-5 data items 6-19 20 or more
referenced data items

0 or 1 file(s) Simple (4) Simple (4) Average (5)

referenced

2-3 files Simple (4) Average (5) Complex (7)

4 or more Average (5) Complex (7) Complex (7)

files ref.

107

Select the output inquiries complexity factor:
" .

CHOICES out_inquir_cplx: 4, 5, 7;

ASK files: "

Files are counted in the logical not physical sense.
Therefore, you are not simply counting the number of physical
files within your application. Rather, only files that contain
data stored in logical groupings within the application are

counted as files. These files perform data storage functions for

the application.

What is the number of files your program will have?
n.

ASK file cplx: "

Select the file complexity factor:

" .

CHOICES file cplx: 7, 10, 15;

ASK interfaces: "

Interfaces involve using data stored by another application
but used by the current application. 1In measuring interfaces
count every logical file that is sent to, shared with, or
received from another application.

What is the number of interfaces your program will have?

”e.
’

ASK inter cplx: "
Select the interface complexity factor:
"o

CHOICES inter_cplx: 4, 5, 7;

ASK Q1: "
Answer each question based on a scale of 0 to 5
where,
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q1. Does the system require reliable backup and recovery?

Select the appropriate rating scale:
" .

CHOICES Q1: O, 1, 2, 3, 4, 5;

ASK Q2: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential
108

Q2. Are data communications required?

Select the appropriate rating scale:
"e

CHOICES Q2: 0, 1, 2, 3, 4, 5;

ASK Q3: "
0 = no influence 3 =
1 = incidental 4 =
2 = nioderate 5 =

average
significant
essential

Q3. Are data communications required?

Select the appropriate rating scale:
"o

CHOICES Q3: 0, 1, 2, 3, 4, 5;

ASK Q4: "
0 = no influence 3 =
1 = incidental 4 =
2 = moderate 5 =
Q4. Is performance critical?

Select the appropriate rating scale:
"o

CHOICES Q4: 0, 1, 2, 3, 4, 5:

ASK Q5: ¥
no influence
incidental

0
1
2 moderate

(S, R W)
wnn

b

average
significant
essential

average
significant
essential

Q5. Will the system run in an existing, heavily utilized

operational environment?

Select the appropriate rating scale:

"e.
14

CHOICES Q5: 0, 1, 2, 3, 4, 5;

ASK Q6: "
0 = no influence 3 =
1 = incidental 4 =
2 = moderate 5 =

Q6. Does the system require on-line

109

average
significant
essential

data entry?

Select the appropriate rating scale:

” .
’

CHOICES Q6: 0, 1, 2, 3, 4, 5;

ASK Q7. "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q7. Does the on-line data entry require the input
transactions to be built over multiple screens
or operations?

Select the appropriate rating scale:

.
’

CHOICES Q7: 0, 1, 2, 3, 4, 5;

ASK Q8: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q8. Are the master files updated on-line?

Select the appropriate rating scale:

1n .
’

CHOICES Q8: 0, 1, 2, 3, 4, 5;

ASK Q9: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q9. Are the inputs, outputs, files, or inquiries complex?

Select the appropriate rating scale:
"o

CHOICES Q%: o0, 1, 2, 3, 4, 5:

ASK Q10: "
0 = no influence 3 = average
1 = incidental 4 = significai.t
2 = moderate 5 = essential
110

Q10. 1Is the internal processing complex?

Select the appropriate rating scale:
"

CHOICES Q10: O, 1, 2, 3, 4, 5:

ASK Q11: ¥
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q11. Is the code designed to be reusable?

Select the appropriate rating scale:
" .

CHOICES Q11: o0, 1, 2, 3, 4, 5:

ASK Qiz: ™
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q12. Are conversion and installation included in the design?

Select the appropriate rating scale:

"ne
’

CHOICES Q12: 0, 1, 2, 3, 4, 5;

ASK Q13: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q13. 1Is the system designed for multiple installations in
different organizations?

Select the appropriate rating scale:
"e.

CHOICES Q13: o0, 1, 2, 3, 4, 5;

ASK Ql4: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q14. 1Is the application designed to facilitate change and
ease of use by the user?

111

Select the appropriate rating scale:

”e.
L4

CHOICES Q14: O, 1, 2, 3, 4, 5;

B. (ICEM2.KBS) FILE
EXECUTE;
RUNTIME;
BKCOLOR=3 ;
ACTIONS
LOADFACTS fixvalue
FIND spreadsheet;

RULE 1
IF retreive = YES and file = ORGANIC
THEN DISPLAY "
(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\organic
continue = NO
spreadsheet = found;
RULE 2
IF retreive = YES and file = SEMIDETACHED
THEN DISPLAY "
(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\semidet
continue = NO
spreadsheet = found;
RULE 3
IF retreive = YES and file = EMBEDDED
THEN DISPLAY"
(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\embedded
continue = NO
spreadsheet = found;
RULE 4
IF retreive = YES and file = DSSCOC
THEN DISPLAY"
(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\dsscoc
continue = NO
spreadsheet = found;
RULE 5
IF retreive = YES and file = DSSFP
THEN DISPLAY"

(CALLING SPREADSHEET)"
WORKSHEET VPP

112

WORKON c:\vpexp, c:\vpexp\dssfp
continue = NO
spreadsheet = found;

RULE 6
IF retreive = NO and mode = ORGANIC
THEN DISPLAY
VALUES SAVED!"
COLOR = 30
DISPLAY"
(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)~"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\organic
spreadsheet = found;
RULE 7
IF retreive = NO and mode = SEMIDETACHED
THEN DISPLAY "
VALUES SAVED!"
COLOR = 30
DISPLAY"
(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)~"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\semidet
spreadsheet = found;
RULE 8
IF retreive = NO and mode = EMBEDDED
THEN DISPLAY "

VALUES SAVED!"
COLOR = 30
DISPLAY"

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)~"
WORKSHEET VPP

113

WORKON c:\vpexp, c:\vpexp\embedded
spreadsheet = found;

RULE 9
IF retreive = NO and model = DSSCOC
THEN DISPLAY "
VALUES SAVED!"®
COLOR = 30
DISPLAY"
(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)~"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\dsscoc
spreadsheet = found;
RULE 10
IF retreive = NO and model = DSSFP
THEN DISPLAY "

VALUES SAVED!"
COLOR = 30
DISPLAY"

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)~"
WORKSHEET VPP

WORKON c:\vpexp, c:\vpexp\dssfp

spreadsheet = found:

114

Ko

10.

11.

12.

LIST OF REFERENCES

Keen, P.G. and Morton, M.S., Decision Support Systems, An
Organizational Perspective, Addison-Wesley, Reading,
Massachusetts, 1978.

Basili, V.R., "Resource Models," in Models and Metrics for
Software Managements and Engineering, IEEE Computer Society
Press, pp. 4-9, 1980.

Londeix, B., Cost Estimation for Software Development,
Addison-Wesley, 1987.

Thibodeau, R., "An Evaluation of Software Cost Estimating
Models," Final Technical Report, RADC-TR-81-144, General
Research Corporation, June 1981.

Kemerer, C.F., "An empirical validation of software cost
models," Communications of the ACM, Vol. 3C¢, No. 5, May
1987.

Mohanty, S. N. "Software cost estimaticn: present and
future," Software Practice and Experience, Vol. 11 (1981),

Basili, V.R., Selby, R.W. Jr., and Phillips, T.Y., "Metric
Analysis and Data Validaticn Across Fortran Projects," IEEE
Transactions on Software Engineering, Vol. SE-9, No. 6,
November 1983.

Jones, T.C., "Measuring programming guality and
productivity," IBM Systems Journal, Vol. 17, No. 1, 1978.

DeMarco, T., Controlling Software Projects, Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

Conte, S.D., Dunsmore, H.E., Shen, V.Y., Software
Engineering Metrics _and Models, Benjamin/Cummings, 1986.

Halstead, M.H., Elements of Software Science, Elsevier
North-Holland, Amsterdam, 1977.

Hamer, P.G., and Frewin, G.D., "M.H. Halstead's Software
Science--A Critical Examination," Software Engineering,
IEEE, 1982, pp. 197-206.

115

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Navlakha, J., "Software Productivity Metrics: Some Candi-
dates and their evaluation," 1986 National Computer
Conference Proceedings, Vol. 55, AFIPS.

Li, H.F., and Cheung, W.K., "An Empirical Study of Software
Metrics," IEEE Transactions on Software Engineering, Vol.
SE-13, No. 6, June 1987.

Shen, V.Y., Conte, S.D., and Dunsmore, H.E., "Software
Science Revisited: A Critical Analysis of the Theory and
its Empirical Support," IEEE Transactions on Software

Engineering, Vol. SE-9, No. 2, March 1983.

Basili, V.R., Models and Metrics for Software Management
and Engineering, IEEE Catalog No. EHO-167.7, Institute of
Electrical and Electronics Engineers, 1980.

Albrecht, A.J., "Measuring Application Development
Productivity", Proceedings of the Joint Share/Guide/IBM
Application Development Symposium, pp. 83-92, October 1979.

Albrecht, A.J. and Gaffney (Jr.), J.E., "Software Function
Source Lines of Code and Development Effort Prediction: A
Software Science Validation," IEEE Transactions on Software
Engineering, Vol. SE-9, No. 6, pp. 639-647, November 1983.

Boehm, B.W., Software Engineering Economics, Englewood
Cliffs, New Jersey: Prentice-Hall, 1981.

Pressman, R.S., Software Engineering: A Practitioner's
Approach, 2nd edition, McGraw-Hill, 1987.

Boehn, B.W., "Software Engineering Economics," IEEE
Transactions on Software Engineering, Vol. SE-10, No. 1,
pPp. 4-21, January 1984.

Bailey, E.K. and others, "A Descriptive Evaluation of
Automated Software Cost-Estimation Models," IDA paper p-
1979, contract MDA 903-84-C-0031, Institute for Defense
Analysis, October 1986.

Nelson, E.A., Management Handbook for the Estimation of
Computer Programming Costs, AD-A648750, Systems Development
Corp., October 31, 1966.

Wolverton, R.W., "The Cost of Developing Large-Scale
Software," IEEE Transactions on Computers, June 1974, pp.
615-636.

116

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Putnam, L.H., "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem", IEEE Transactions
on Software Engineering, July 1978, pp. 345-361.

Putnam, L.H., and Fitzsimmons, A., "Estimating Software
Costs," Datamation, September 1979, pp. 189-198, October
1979, pp. 171-178 and November 1979, pp. 137-140.

Putnam, L.H., Software Cost Estimating and Life-Cycle
Control: Getting the Software Numbers, IEEE Catalog No.

EHO 165-1, 1Institute of Electrical and Electronics
Engineers, 1980.

Wiener-Ehrlich, W.K., Hamrick, J.R. and Rupolo, V.F,
"Modeling software behavior in terms of a formal lifecycle
curve: implication for software maintenance," IEEE

Transactions on Software Engineering, 10(4), pp. 376-383,
1984.

Herd, J.R., Postak,J.N., Russell, W.E., and Stewart, K.R.,

"Software Cost Estimation Study-Study Results," Final
Technical Report, RADC-TR-77-220, AD-A042264, Vol. I (of
two), Doty Associates, Inc., Rockville, Maryland, June
1877.

Freiman, F.R., and Park, R.E., "PRICE Software Model-
Version 3: An Overview," Proceedings, IEZE~-PINY Workshop

on Quantitative Software Models, IEEE Catalog No. TH0067-9,
October 1979, pp. 32-41.

Walston, C.E., and Felix, C.P., "A Method of Programming
Measurement and Estimation," IBM Systems Journal, Vol. 16,
No. 1, 1977, pp. 54-73.

Black, R.K.D., Curnow, R.P., Katz, R., and Gray, M.D., "BCS
Software Production Data," Final Technical Report, RADC-TR-
77-116, Boeing Computer Services, Inc., March 1977. NTIS
No. AD-A039852.

Carriere, W.M., and Thibodeau, R., "Development of a
Logistics Software Cost Estimating Technique for Foreign
Military Sales," Report CR-3-839, General Research Corp.,
June 1979.

Bailey, J.W., and Basili, V.R., "A Meta-Model for Software
Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering,
IEEE/ACM/NBS, March 1981, pp. 107-116.

Dircks, H.F., "SOFCOST: Grumman's software cost
eliminating model," in IEEE NAECON 1981, May 1981l.

117

36.

37.

38.

39.

40.

41.

42.

43.

14.

45.

46.

47.

48.

Tausworthe, R.C., "Deep Space Network Software Cost
Estimation Model," Jet Propulsion Laboratory, Pasadena, CA,
JPL Publication 81-7, April 1981.

Jensen, R.W., "An improved macrolevel software development

resource estimation model," in Proceedings of the 5th ISPA
Conference, April 1983, pp. 88-92.

Jensen, R.W., and Lucas, S., "Sensitivity analysis of the
Jensen software model," in Proceedings of the 5th ISPA
Conference, April 1983, pp. 384-389.

Rubin, H.A., "Macro-estimation of Software Development
Parameters; The Estimacs System," Softfair Proceedings,
IEEE, July 1983, pp. 110-118.

Rubin, H.A., "A Comparison of Cost Estimation Tools,"
Proceeding, 8th International Conference of Software
Engineering, August 1985, pp. 174-180.

Jones, T.C., Programming Productivity, McGraw-Hill, 1986.

Gordon Group, Before You ILeap, Users Guide, Gordon Group
1986.

BIS, BIS Estimator User Manual, Version 4.4, BIS Applied
SystemsLtd, London, UK, 1987.

Dreger, J.B., Function Point Analysis, Prentice-Hall,
Englewood Cliffs, New Jersey, 1989.

Sprague, R.H.Jr., and Watson, H.J., Decision Support
Systems, 2nd edition, Prentice Hall, 1989,

Paperback Software, VP-Expert Rule-Based Expert System
Development Tool, 1989.

Paperback Software, VP-Planner Plus: Enhanced Spreadsheet,
Database, Graphics, and Report Generation, 1987.

Verner, J., and Tate, G., "Estimating Size and Effort in
Fourth-Generation Development," IEEE Software, July 1988,
pp. 15-22.

118

